GREEN SYNTHESIS OF SILVER NANOPARTICLES USING „GALIUM VERUM” L. AQUEOUS EXTRACT AND EVALUATION OF ITS ANTIMICROBIAL ACTIVITY

Authors

  • Adriana-Maria ANDREICA Babeş-Bolyai University, “Raluca-Ripan” Institute for Research in Chemistry, 30 Fântânele str., RO-400294, Cluj-Napoca, Romania. adriana.andreica@ubbcluj.ro https://orcid.org/0009-0001-7005-2696
  • Mihaela Cecilia VLASSA Babeş-Bolyai University, “Raluca-Ripan” Institute for Research in Chemistry, 30 Fântânele str., RO-400294, Cluj-Napoca, Romania https://orcid.org/0000-0002-8141-2570
  • Rahela CARPA Babeş-Bolyai University, Faculty of Biology and Geology, Molecular Biology and Biotechnology Department, 1 Mihail Kogălniceanu str., RO-400084, Cluj-Napoca, Romania https://orcid.org/0000-0001-8974-1718
  • Ioan PETEAN Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400084, Cluj-Napoca, Romania https://orcid.org/0000-0003-3274-8817

DOI:

https://doi.org/10.24193/subbchem.2025.1.06

Keywords:

green synthesis, nanoparticles, galium verum, antimicrobial activity

Abstract

The development of cost-efficient and sustainable methods for the synthesis of nanomaterials still remains a scientific challenge. The aim of this study was to investigate the green synthesis of silver nanoparticles using aqueous extract of Galium verum L. (GV) as a potential source of biomolecules able to reduce the silver ions and stabilize them. Reaction parameters such as concentrations of AgNO3, extract to AgNO3 ratio, temperature, pH, and reaction time were optimized. The synthesis of silver nanoparticles (GV-AgNPs) using different parameters was monitored by ultraviolet-visible spectroscopy (UV-Vis). Fourier transform infrared spectroscopy (FTIR) results showed the presence of functional groups that act as reducing agents and stabilize the GV-AgNPs. Atomic force microscopy (AFM) confirmed that the particles were round-shaped with a diameter of about 25 nm. The GV-AgNPs show different antimicrobial activity depending on the type of sample and depending on the microbial strain tested.

References

1. K. K. Harish; N. Venkatesh; H. Bhowmik; A. Kuila; Biomed. J. Sci. Tech. Res., 2018, 4, 3765-3775

2. S. Padalkar; J. R. Capadona; S. J. Rowan; C. Weder; Y. H. Won; L. A. Stanciu; R. J. Moon; Langmuir, 2010, 26, 8497-8502

3. K. S. B. Naidu; P. Govender; J. K. Adam; J. Pure Appl. Microbiol., 2015, 9, 103-112

4. X. Y. Dong; Z. W. Gao; K. F. Yang; W. Q. Zhang; L. W. Xu; Catal. Sci. Technol., 2015, 5, 2554–2574

5. R. Abbas; J. Luo; X. Qi; A. Naz; I. A. Khan; H. Liu; S. Yu; J. Wei; Nanomaterials, 2024, 14, 1425

6. A. Jamaludin; C. K. Faizal; Indian J. Sci. Technol., 2017, 10, 1-5

7. P. Chen; L. Song; Y. Liu; Y. E. Fang; Radiat. Phys. Chem., 2007, 76, 1165–1168

8. M. Andersson; J. S. Pedersen; A. E. C. Palmqvist; Langmuir, 2005, 21, 11387–11396

9. R. A. Khaydarov; R. R. Khaydarov; O. Gapurova; Y. Estrin; T. Scheper; J. Nanopart. Res., 2009, 11, 1193–1200

10. H. Wang; X. Qiao; J. Chen; S. Ding; Colloids Surf. A: Physicochem. Eng. Asp., 2005, 256, 111–115

11. A. Pyatenko; K. Shimokawa; M. Yamaguchi; O. Nishimura; M. Suzuki; Appl. Phys. A., 2004, 79, 803–80

12. A. Pal; S. Shah; S. Devi; Mater. Chem. Phys., 2009, 114, 530–532

13. R. F. Elsupikhe; M. B. Ahmad; K. Shameli; N. A. Ibrahi; N. Zainuddin; IEEE Trans. Nanotechnol., 2016, 15, 209– 213

14. P. Khandel, P; R. K. Yadaw; D. K. Soni; L. Kanwar; S. K. Shahi; J. Nanostruct. Chem., 2018, 8, 217-254

15. S. C. Jain; M. S. Mehata; Sci. Rep., 2017, 7, 15867

16. L. Wang; Y. Wu; J. Xie; S. Wu; Z. Wu; Mater. Sci. Eng. C., 2018, 86, 1-8

17. J. Bradic; A. Petkovic; M. Tomović; Serb. J. Exp. Clin. Res., 2018, 22, 187-193

18. I. T. Vasilevna; G. O. Volodymyrivna; T. E. Leonidivna; K. I. Aleksandrovna; K. A. Mihaylovna; Pharmacogn. Commn., 2016, 6, 42-47

19. P. -R. Laanet; P. Saar-Reismaa; P. Jõul; O. Bragina; M. Vaher; Molecules, 2023, 28, 2867

20. J. Bradic; V. Zivkovic; I. Srejovic; V. Jakovljevic; A. Petkovic; T. N. Turnic; J. Jeremic; N. Jeremic; S. Mitrovic; T. Sobot; N. Ponorac; M. Ravic; M. Tomovic, Oxid. Med. Cell. Longev., 2019, 4235405

21. M. Schmidt; C. J. Scholz; G. L. Gavril; C. Otto; C. Polednik; J. Roller; R. Hagen; Int. J. Oncol., 2014, 44, 745-760

22. L. Ӧ. Demirezer; F. Gürbüz; Z. Güvenalp; K. Ströch; A. Zeeck; Turk. J. Chem., 2006, 30, 525-534

23. C. C. Zhao; J. H. Shao; X. Li; X. D. Kang; Y. W. Zhang; D. L. Meng; N. Li, J. Asian Nat. Prod. Res., 2008, 10, 611-615

24. A. D. Farcas; A. C. Mot; C. Zagrean-Tuza; V. Toma; C. Cimpoiu; A. Hosu; M. Parvu; I. Roman; R. Silaghi-Dumitrescu, PLoS One, 2018, 13, e0200022

25. L. Vlase; A. Mocan; D. Hanganu; D. Benedec; A. Gheldiu; G. Crișan, Digest J. Nanomater. Biostruct., 2014, 9, 1085-1094

26. P. Mulvaney; Langmuir, 1996,12, 788–80

27. C. Ozdemir; M. Gencer; I. Coksu; T. Ozbek; S. Derman; Arh. Hig. Rada Toksikol, 2023, 74, 90-98

28. M. Ndikau; N. M. Noah; D. M. Andala; E. Masika; Int. J. Anal. Chem., 2017, 8108504

29. S. Ansar; H. Tabassum; N. S. M. Aladwan; M. N. Ali; B. Almaarik; S. AlMahrouqi; M. Abudawood; N. Banu; R. Alsubki; Sci. Rep., 2020, 10, 18564

30. M. Vanaja; S. Rajeshkumar; K. Paulkumar; G. Gnanajobitha; C. Malarkodi; G. Annadurai; Adv. Appl. Sci. Res., 2013, 4, 50-55

31. M. Sathishkumar; K. Sneha; Y. S. Yun; Bioresour. Technol., 2010, 101, 7958-7965

32. S. Pugazhendhi; P. Sathya; P. K. Palanisamy; R. Gopalakrishnan; J. Photochem. Photobiol. B, 2016, 159, 155-160

33. S. Khan; S. Shujah; U. Nishan; S. Afridi; M. Asad; A. U. H. A. Shah; N. Khan; S. Ramzan; M. Khan; Arab. J. Sci. Eng., 2023, 48, 7673–7684

34. A. D. Semenescu; E. A. Moacă; A. Iftode; C. A. Dehelean; D. S. Tchiakpe-Antal; L. Vlase; A. M. Vlase; D. Muntean; R. Chioibaş; Molecules, 2023, 28, 7804

35. J. B. Lambert; H. F. Shurvell; R. G. Cooks; Organic Structural Spectroscopy, Prentice-Hall Inc., New Jersey, 1998

36. N. H. Rezazadeh; F. Buazar; S. Matroodi; Sci. Rep., 2020, 10, 19615

37. S. Narath; S. S. Shankar; S. K. Sivan; B. George; T. D. Thomas; S. Sabarinath; S. K. Jayaprakash; S. Wacławek; V. V.T. Padil; Ecol. Chem. Eng. S., 2023, 30, 7-21

38. A. Deep; M. Verma; R. K. Marwaha; A. K. Sharma; B. Kumari; Curr. Cancer Ther. Rev., 2019, 15, 1-7

39. K. M. Kumar; B. K. Mandal; H. A. K. Kumar; S. B. Maddinedi; Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013,116, 539-545

40. A. J. Kora; S. R. Beedu; A. Jayaraman; Org. Med. Chem. Lett., 2012, 2, 17

41. A. O. Danila; F. Gatea; G. L. Radu; Chem. Nat. Compd., 2011, 47, 22–26

42. A. O. Matei; F. Gatea; G. L. Radu; J. Chromatogr. Sci., 2015, 53,1147–1154

43. A. Mocan; G. Crișan; L. Vlase; B. Ivănescu; A. S. Bădărău; A. L. Arsene; Farmacia, 2016, 64, 95-99

44. N. Swilam; K. A. Nematallah; Sci. Rep., 2020, 10, 14851

45. Q. Lin; H. Huang; L. Chen; G. Shi; Biomed. Res., 2017, 28, 1276-1279

46. M. C. Lite; R. Constantinescu; E. C. Tănăsescu; A. Kuncser; C. Romanițan; D. E. Mihaiescu; I. Lacatusu; N. Badea; Materials, 2023, 16, 3924

47. L. David; B. Moldovan; Studia UBB Chemia, LXVII, 2022, 3, 37-44

48. J. K. T. Al-Isawi; A. M. Mohammed; D. T. A. Al-Heetimi; Studia UBB Chemia, LXVIII, 2023, 2, 131-144

49. S. E. Avram; B. V. Birle; L. B. Tudoran; G. Borodi; I. Petean; Water, 2024, 16, 1027

50. S. E. Avram; L. B. Tudoran; S. Cuc; G. Borodi, B. V. Birle; I. Petean; J. Compos. Sci., 2024, 8, 219

51. R. M. Atlas; Handbook of Microbiological Media, 4th ed., CRC Press, New York, 2010

52. R. Carpa; M. Drăgan-Bularda; V. Muntean; Microbiologie Generală Lucrări Practice (General Microbiology, Practical Works), Cluj University Press Publishing House, 2014

Downloads

Published

2025-03-20

How to Cite

ANDREICA, A.-M., VLASSA, M. C., CARPA, R., & PETEAN, I. (2025). GREEN SYNTHESIS OF SILVER NANOPARTICLES USING „GALIUM VERUM” L. AQUEOUS EXTRACT AND EVALUATION OF ITS ANTIMICROBIAL ACTIVITY. Studia Universitatis Babeș-Bolyai Chemia, 70(1), 87–100. https://doi.org/10.24193/subbchem.2025.1.06

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.