GOLD NANOPARTICLES FUNCTIONALIZED WITH ANTICANCER BIOCOMPOUNDS
DEDICATED TO THE MEMORY OF Associated Professor MARIUS IULIU SĂLĂJAN (1952-2004)
DOI:
https://doi.org/10.24193/subbchem.2025.1.04Keywords:
gold nanoparticles, doxorubicin, adjuvant anticancer molecules, UV-Vis spectroscopy, surface plasmon resonanceAbstract
The focus of this work is on the functionalization of gold nanoparticles, GNPs, with doxorubicin, D, an anticancer drug, both in the absence and in the presence of natural adjuvant biomolecules, like piperine, P, resveratrol, R, resveratrol-piperine, RP, complex, and icariin, I, which are therapeutic molecules with demonstrated anticancer and anti-inflammatory activity, to form highly stabilized colloidal dispersions. The green syntheses of GNPs, as cores, loading self-assemblies of various selected biomolecules, adsorbed on their surface, as shells, was confirmed by observing surface plasmon resonance at about 538 nm. Further, gold nanoparticles stabilized by resveratrol, GNP-R, are functionalized with various concentrations of selected biomolecules: D, P, R, RP, and I, resulting in different D/P/R/RP/I@GNPs-R composite nanoparticles for various compositions. Another series of stabilized colloidal dispersions is generated as GNP-R1, where the initial GNP-R is centrifuged and washed and then it is dispersed in aqueous solutions and further functionalized with said selected biomolecules. This study proves the functionalization of GNPs, as composite nanoparticles of high stability, in the presence of phosphate buffer saline, PBS, as confirmed by UV-Vis spectra of their colloidal aqueous dispersions.
References
1. H. Huang; R. Liu; J. Yang; J. Dai; S. Fan; J. Pi; Y. Wei; X. Guo; Pharmaceutics, 2023, 15, 1868
2. J. Lee; D. K. Chatterjee; M. H. Lee; S. Krishnan; Cancer Lett., 2014, 347, 46-53
3. M. A. Ujica; G. A. Paltinean; A. Mocanu; M. Tomoaia-Cotisel; Acad. Rom. Sci. Ann.-Ser. Biol. Sci., 2020, 9(1), 97-139
4. L. Kumari; Y. Choudhari; P. Patel; G. D. Gupta; D. Singh; J. M. Rosenholm; K. K. Bansal; B. D. Kurmi; Life, 2023, 13(5), 1099
5. I. R. S. Vieira; L. Tessaro; A. K. O. Lima; I. P. S. Velloso; C. A. Conte-Junior; Nutrients, 2023, 15, 3136
6. O. Horovitz; G. Tomoaia; A. Mocanu; T. Yupsanis; M. Tomoaia-Cotisel; Gold Bull., 2007, 40(4), 295-304
7. M. A. Dheyab; A. A. Aziz; P. Moradi Khaniabadi; M. S. Jameel; N. Oladzadabbasabadi; S. A. Mohammed; R. S. Abdullah; B. Mehrdel; Int. J. Mol. Sci., 2022, 23(13), 7400
8. M. Y. Kalashgrani; N. Javanmardi; J. Adv. Appl. NanoBio. Tech., 2022, 3(3), 1–6
9. J. Turkevich; P. C. Stevenson; J. Hillier; Discuss Faraday Soc., 1951, 11, 55–75
10. G. Frens; Nat. Phys. Sci., 1973, 241, 20–22
11. H. Li; S. Pan; P. Xia; Y. Chang; C. Fu; W. Kong; Z. Yu; K. Wang; X. Yang; Z. Qi; J. Biol. Eng., 2020, 14, 14
12. L. Z. Racz; C.-P. Racz; O. Horovitz; G. Tomoaia; A. Mocanu; I. Kacso; M. Sarkozi; M. Dan; S. Porav; G. Borodi; M. Tomoaia-Cotisel; Stud. UBB Chem., 2022, 67(3), 75-99
13. C.-P. Racz; L. Z. Racz; C. G. Floare; G. Tomoaia; O. Horovitz; S. Riga; I. Kacso; G. Borodi; M. Sarkozi; A. Mocanu; C. Roman; M. Tomoaia-Cotisel; Food Hydrocoll., 2023, 139, 108547
14. I. Faraone; C. Sinisgalli; A. Ostuni; M. F. Armentano; M. Carmosino; L. Milella; D. Russo; F. Labanca; H. Khan; Pharmacol. Res., 2020, 155, 104689
15. P. Palozza; N. Maggiano; G. Calviello; P. Lanza; E. Piccioni; F. O. Ranelletti; G. M. Bartoli; Carcinogenesis, 1998, 19(2), 373–376
16. M. E. Orczyk; M. Samoc; J. Swiatkiewicz; N. Manickam; M. Tomoaia-Cotisel; P. N. Prasad; Appl. Phys. Lett., 1992, 60(23), 2837-2839
17. E. Chifu; J. Zsako; M. Tomoaia-Cotisel; J. Coll. Interf. Sci., 1983, 95(2), 346-354
18. M. Tomoaia-Cotisel; Progr. Colloid Polym. Sci., 1990, 83, 155-166
19. M. Tomoaia-Cotisel; J. Zsako; E. Chifu; Ann. Chim. (Rome), 1981, 71(3-4), 189-200
20. J. Zsako; M.Tomoaia-Cotisel; E. Chifu; J. Coll. Interf. Sci., 1984, 102(1), 186-205
21. K. Kaminska; A. Cudnoch‑Jedrzejewska; Neurotox. Res., 2023, 41, 383–397
22. S. R. Kesler; D. W. Blayney; JAMA Oncol., 2016, 22(2), 185–92
23. A. N. Linders; I.B. Dias; T. Lopez Fernandez; C. G. Tocchetti; N. Bomer; P. Van der Meer; npj Aging, 2024, 10, 9
24. L.-J. Yang; T. Han; R.-N. Liu; S.-M. Shi; S.-Y. Luan; S.-N. Meng; Biomed. Pharmacother., 2024, 177, 117099
25. K. Kudoh; M. Ramanna; R. Ravatn; A. G. Elkahloun; M. L. Bittner; P. S. Meltzer; J. M. Trent; W. S. Dalton; K.-V. Chin; Cancer Res., 2000, 60, 4161-4166
26. H. C. Arora; M. P. Jensen; Y. Yuan; A. Wu; S. Vogt; T. Paunesku; G. E. Woloschak; Cancer Res., 2012, 72(3), 769–778
27. G. Tomoaia; O. Horovitz; A. Mocanu; A. Nita; A. Avram; C.-P. Racz; O. Soritau; M. Cenariu; M. Tomoaia-Cotisel; Colloid. Surface. B, 2015, 135, 726-734
28. O. Vesely; S. Baldovska; A. Kolesarova; Nutrients, 2021, 13, 3095
29. R. K. Mohanty; S. Thennarasu; A. B. Mandal; Colloid. Surface. B, 2014, 114, 138-143
30. L. Fremont; Life Sci., 2000, 66(8), 663-673
31. J. M. Lopez-Nicolas; F. Garcia-Carmona; J. Agr. Food Chem., 2008, 56, 7600-7605
32. M. Annaji; I. Poudel; S. H. S. Boddu; R. D. Arnold; A. K. Tiwari; R. J. Babu; Cancer rep., 2021, 4(3), 1353
33. C. Alarcon de la Lastra; I. Villegas; Biochem. Soc. T., 2007, 35(5), 1156-1160
34. D. Delmas; V. Aires; E. Limagne; P. Dutartre; F. Mazue; F. Ghiringhelli; N. Latruffe; Ann. NY Acad. Sci., 2011, 1215, 48-59
35. L. G. Carter; J. A. D’Orazio; K. J. Pearson; Endocr.-Relat. Cancer, 2014, 21(3), 209-225
36. S. Filardo; M. Di Pietro; P. Mastromarino; R. Sessa; Pharmacol. Ther., 2020, 214, 107613
37. Z. Jiang; K. Chen; L. Cheng; B. Yan; W. Qian; J. Cao; J. Li; E. Wu; Q. Ma; W. Yang; Ann. NY Acad. Sci., 2017, 1403, 59-69
38. M. Zadorozhna; T. Tataranni; D. Mangieri; Mol. Biol. Rep., 2019, 46, 5617-5629
39. A. K. Tripathi; A. K. Ray; S. K. Mishra; Beni-Suef Univ. J. Basic. Appl. Sci., 2022, 11, 16
40. S. Benayad; H. Wahnou; R. El Kebbaj; B. Liagre; V. Sol; M. Oudghiri; E. M. Saad; R. E. Duval; Y. Limami; Cancers, 2023, 15, 5488
41. J. S. Lim; D. Y. Lee; J. H. Lim; W. K. Oh; J. T. Park; S. C. Park; K. A. Cho; Front. Biosci. (Landmark Ed), 2022, 27(4), 137
42. J. J. Johnson; M. Nihal; I. A. Siddiqui; C. O. Scarlett; H. H. Bailey; H. Mukhtar; N. Ahmad; Mol. Nutr. Food. Res., 2011, 55, 1169-1176
43. J. K. Tak; J. H. Lee; J.-W. Park; BMB Rep., 2012, 45(4), 242-246
44. C. He; Z. Wang; J. Shi; Adv. Pharmacol., 2020, 87, 197-203
45. Z. Bi; W. Zhang; X. Yan; Biomed. Pharmacother., 2022, 151, 113180
46. Y. Liu; H. Yang; J. Xiong; J. Zhao; M. Guo; J. Chen; X. Zhao; C. Chen; Z. He; Y. Zhou; L. Xu; Biomed. Pharmacother., 2023, 157, 113991
47. Z. Yu; J. Guo; M. Hu; Y. Gao; L. Huang; ACS Nano, 2020, 14, 4816-4828
48. Z. Wang; L. Yang; Y. Xia; C. Guo; L. Kong; Biol. Pharm. Bull., 2015, 38(2), 277-284
49. A. Avram; G. Tomoaia; A. Mocanu; M. Tomoaia-Cotisel; Acad. Rom. Sci. Ann., Ser. Phys. Chem, 2020, 5(2), 23-64
50. A. Hossain; Md. T. Rayhan; Md. H. Mobarak; Md. I. H. Rimon; N. Hossain; S. Islam; S. M. A. Al Kafi; Results Chem., 2024, 8, 101559
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.