OPTIMIZATION OF THE ECO-FRIENDLY SYNTHESIS OF SILVER NANOPARTICLES USING GOJI BERRIES’ BIOACTIVE COMPOUNDS
DOI:
https://doi.org/10.24193/subbchem.2022.3.03Keywords:
silver nanoparticles, goji berries.Abstract
The numerous applications of metallic nanoparticles in different fields such as materials science, medicine, biology, led to the rapid development of various synthesis methods of these nanomaterials, among which the biogenic approach in obtaining nanoparticles has been proved to be an efficient alternative compared to other methods. The present study aims to investigate the potential of goji berries extract as source of bioactive compounds able to reduce the silver ions and to stabilize the resulting nanoparticles. Reaction parameters such as pH and AgNO3 concentration were analyzed and optimized in order to obtain spherical, well dispersed and high yield silver nanoparticles. Five different pH values (6; 7; 8; 9; 10) and five ratios fruit extract: silver nitrate solution (1:1; 1:3; 1:7; 1:10; 1:15) were investigated and it was found that the silver nanoparticles obtained at pH=9 and 1:10 ratio demonstrated the highest monodispersity and were obtained in the highest yield. The obtained nanoparticles were characterized in terms of their size and shape using transmission electron microscopy (TEM) and UV-vis spectroscopy.
References
W.T. Liu, J. Biosci Bioeng., 2006, 102, 1-7.
P. Mohampuria, N.K. Rana, S.K. Yadav, J. Nanopart. Res., 2008, 10, 507-517.
R. Opris, V. Toma, D. Olteanu, I. Baldea, A. Baciu, F. Imre-Lucaci, A. Berghian Sevastre, C. Tatomir, B. Moldovan, S. Clichici, L. David, A. Florea, G.A. Filip, Nanomedicine, 2019, 14, 275-299.
T.A.J. de Souza, L.R.R. Souza, L.P. Frankie, Ecotoxicol. Environm. Safety, 2019, 171, 691-700.
J.S. Choi, H.C. Jung, Y.J. Baek, B.Y. Kim, M.W. Lee, H.D. Kim, S.W. Kim, Nanomaterials, 2021, 11, 205.
S. Iravani, Green Chemistry, 2011, 13, 2638-2650.
W.R. Rolim, M.T. Pelegrino, B. de Araujo Lima, L.S. Ferraz, F.N. Costa, J.S. Bernardes, T. Rodigues, M. Brocchi, A.B. Seabra, Appl. Surface Sci., 2019, 463, 66-74.
L. David, B. Moldovan, I. Baldea, D. Olteanu, P. Bolfa, S. Clichici, G.A. Filip, Mat. Sci. Eng. C, 2020, 110, 110709.
I. Baldea, A. Florea, D. Olteanu, S. Clichici, L. David, B. Moldovan, M. Cenariu, M. Achim, R. Suharoschi, S. Danescu, A. Vulcu, G.A. Filip, Nanomedicine, 2020, 15, 55-75.
F. Ortega, V.B. Arce, M.A. Garcia, Carbohydrate Polym., 2021, 252, 117208.
V.P. Giri, S. Pandey, M. Kumari, A. Tripathi, R. Katiyar, J.C. White, A. Mishra, ACS Agric. Sci. Technol., 2022, DOI:10.1021/acsagscitech.1c00252
J.R. Koduru, S.K. Kailasa, J.R. Bhamore, K.H. Kim, T. Dutta, K. Vellingiri, Adv. Colloid Interface Sci., 2018, 256, 326-339.
B.B. Bidovic, D.D. Milincic, M.D. Marcetic, J.D. Djuris, T.D. Ilic, A.Z. Kostic, M.B. Pesic, Antioxidants, 2022, 11, 248.
P. Skenderidis, S. Leontopoulos, D. Lampakis, Nutraceuticals, 2022, 2, 32-48.
B. Cui, S. Liu, X. Lin, J. Wang, S. Li, Q. Wang, S. Li, Molecules, 2011, 16, 9116-9128.
M. Forino, L. Tartaglione, C. Dell’Aversano, P. Ciminiello, Food Chem., 2016, 194, 1254-1259.
S. Ashokkumar, S. Ravi, V. Kathiravan, S. Velmurugan, Environ. Sci. Pollution Res., 2014, 21, 11439–11446.
G.R. Sanchez, C.L. Castilla, N.B. Gomez, A. Garcia, R. Marcos, E.R. Carmona, Mat. Letters 2016, 183, 255–260.
S. Agnigotri, D. Sillu, G. Sharma, R.K. Rya, Applied Nanosci., 2018, 8, 2077-2092.
A. Amittal, Y. Kisti, U.C. Banerjee, Biotechnol. Adv., 2013, 31, 346-356.
V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Meth. Enzymol., 1999, 299, 152-178.
R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yango, C. Rice-Evans, Free Rad. Biol. Med., 1999, 26, 1231-1237.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.