THE EFFECT OF GOLD NANOPARTICLES SYNTHESIZED BY SODIUM CITRATE AND FUNCTIONALIZED WITH ANTICANCER AND NATURAL COMPOUNDS ON CANCER CELL LINES
DEDICATED TO THE MEMORY OF Associated Professor MARIUS IULIU SALAJAN (1952-2004)
DOI:
https://doi.org/10.24193/subbchem.2025.1.05Keywords:
functionalized gold nanoparticles, cytotoxicity and anticancer activity, cancer cell linesAbstract
Natural compounds, such as trans-resveratrol, R, piperine, P, and icariin, Ic, have antioxidant and anti-inflammatory properties, and potential anticancer activity. Gold nanoparticles, GNPs, are biocompatible and can be used as carriers for biomolecule delivery, improving their performance at a small dose. The aim of the present study was to synthesize GNPs with sodium citrate, noted GNP_C (or GNP-C), and enhancing their stability and anticancer activity by functionalization with R, P, Ic, asparagine, A, and doxorubicin, D, as a standard drug. The obtained GNPs as cores, loading selected biomolecules, adsorbed on their surface as shells, were characterized by various methods, UV-Vis spectroscopy, XRD, AFM, TEM, and particle size analysis. The anticancer activity of functionalized GNP_C was evaluated using MTT assay in four human cell lines: breast cancer, MDA-MB-231 and MCF-7 cell lines, tumor stem cells (isolated from glioblastoma), a GM1 cell line, and a normal (healthy) stem cell line derived from a dental follicle, DF. GNP_C functionalized with R, P or Ic exhibited an anticancer activity comparable to GNP_C functionalized with doxorubicin for low concentrations in gold and in natural compounds, thus reducing side effects of anticancer drug. These promising results need further examination using various cell lines and animal models, to clinical applications.
References
1. R. L. Siegel; A. N. Giaquinto; A. Jemal; CA Cancer J. Clin., 2024, 74, 12–49
2. K. Sztandera; M. Gorzkiewicz; B. Klajnert-Maculewicz; Mol. Pharmaceutics, 2019, 16, 1−23
3. H. Huang; R. Liu; J. Yang; J. Dai; S. Fan; J. Pi; Y. Wei; X. Guo; Pharmaceutics, 2023, 15, 1868
4. O. Horovitz, A. Mocanu, G. Tomoaia, M. Crisan, L.-D. Bobos, Cs. Racz, M. Tomoaia-Cotisel, Studia Univ. Babes-Bolyai, Chem., 2007, 52 (3), 53-71
5. G. Tomoaia; O. Horovitz; A. Mocanu; A. Nita; A. Avram; C. Pal Racz; O. Soritau; M. Cenariu; M. Tomoaia-Cotisel; Colloids Surf. B Biointerfaces, 2015, 135, 726-734
6. A. Sobczak-Kupiec; D. Malina; M. Zimowska; Z. Wzorek; Digest J. Nanomater. Biostruct., 2011, 6(2), 803-808
7. A. Jakhmola; V. Onesto; F. Gentile; F. M. Kashkooli; K. Sathiyamoorthy; E. Battista; R. Vecchione; K. Rod; M. C. Kolios; J. (Jahan) Tavakkoli; P. A. Netti; Mater. Today Sustain., 2024, 28, 101012
8. M. M. Khalaf; F. F. El-Senduny; H. M. A. El-Lateef; H. Elsawy; A. H. Tantawy; S. Shaaban; J. Mol. Liq., 2021, 340, 117202
9. J. Dong; P. L. Carpinone; G. Pyrgiotakis; P. Demokritou; B. M. Moudgil; Kona Powder Part. J., 2020, 37, 224-232
10. J. Piella; N. G. Bastus; Victor Puntes; Chem. Mater., 2016, 28, 1066−1075
11. N. Hanzic; T. Jurkina; A. Maksimovic; M. Gotic; Radiat. Phys. Chem., 2015, 106, 77-82
12. J.-W. Park; J. S. Shumaker-Parry; J. Am. Chem. Soc., 2014, 136, 1907−1921
13. A. G. Memon; I. A. Channa; A. A. Shaikh; J. Ahmad; A. F. Soomro; A. S. Giwa; Z. T. Baig; W. A. Mahdi; S. Alshehri; Crystals, 2022, 12, 1747
14. L. Shi; E. Buhler; F. Boue; F. Carn; J. Colloid Interface Sci., 2017, 492, 191-198
15. A. Tirkey; P. J. Babu; Sens. Int., 2024, 5, 100252
16. D. Luo; X. Wang; C. Burda; J. P. Basilion; Cancers, 2021, 13, 1825
17. R. Z. Cer; U. Mudunuri; R. Stephens; F. J. Lebeda; Nucl. Acids Res., 2009, 37, W441–W445
18. M. M. Fathy; A. A. Elfiky; Y. S. Bashandy; M. M. Hamdy; A. M. Elgharib; I. M. Ibrahim; R. T. Kamal; A. S. Mohamed; A. M. Rashad; O. S. Ahmed; Y. Elkaramany; Y. S. Abdelaziz; F. G. Amin; J. I. Eid; Sci. Rep., 2023, 13, 2749
19. C. Freese; C. Uboldi; M. I. Gibson; R. E. Unger; B. B. Weksler; I. A. Romero; P.-O. Couraud; C. J. Kirkpatrick; Part. fibre toxicol., 2012, 9, 23
20. D. Kumar; I. Mutreja; K. Chitcholtan; P. Sykes; Nanotechnology, 2017, 28(47), 475101
21. V. Raji; J. Kumar; C. S. Rejiya; M. Vibin; V. N. Shenoi; A. Abraham; Exp. Cell Res., 2011, 317, 2052-2058
22. J. C. Mohan; G. Praveen; K.P. Chennazhi; R. Jayakumar; S.V. Nair; J. Exp. Nanosci., 2015, 8(1), 32-45
23. S. Y. Choi; S. Jeong; S. H. Jang; J. Park; J. H. Park; K. S. Ock; S. Y. Lee; S.-W. Joo; Toxicol. In Vitro, 2012, 26, 229-237
24. J. Lee; D. K. Chatterjee; M. H. Lee; S. Krishnan; Cancer Lett., 2014, 347, 46-53
25. S. K. Surapaneni; S. Bashir; K. Tikoo; Sci. Rep., 2018, 8, 12295
26. E. E. Connor; J. Mwamuka; A. Gole; C. J. Murphy; M. D. Wyatt; Small, 2005, 3, 325-327
27. N. Tlotleng; M. A. Vetten; F. K. Keter; A. Skepu; R. Tshikhudo; M. Gulumian; Cell. Biol. Toxicol., 2016, 32(4), 305-321
28. O. Horovitz; G. Tomoaia; A. Mocanu; T. Yupsanis; M. Tomoaia-Cotisel; Gold Bull., 2007, 40(4), 295-304
29. M. A. Ujica; C.-T. Dobrota; G. Tomoaia; A. Mocanu; C.-L. Rosoiu; I. Mang, V. Raischi, M. Tomoaia-Cotisel; Acad. Rom. Sci. Ann. Ser. Biol. Sci., 2024, 13(2), 145-167.
30. D. Delmas; V. Aires; E. Limagne; P. Dutartre; Frederic Mazue; F. Ghiringhelli;
N. Latruffe; Ann. N. Y. Acad. Sci., 2011, 1215, 48-59
31. J. J. Johnson; M. Nihal; I. A. Siddiqui; C. O. Scarlett; H. H. Bailey; H. Mukhtar; N. Ahmad; Mol. Nutr. Food Res., 2011, 55, 1169–1176
32. J. K. Tak; J. H. Lee; J.-W. Park; BMB reports, 2012, 45(4), 242-246
33. Z. Jiang; K. Chen; L. Cheng; B. Yan; W. Qian; J. Cao; J. Li; E. Wu; Q. Ma; W. Yang; Ann. N.Y. Acad. Sci, 2017, 1403, 59-69
34. O. Vesely; S. Baldovska; A. Kolesarova; Nutrients, 2021, 13, 3095
35. S. Benayad; H. Wahnou; R. El Kebbaj; B. Liagre; V. Sol; M. Oudghiri; E. M. Saad; R. E. Duval; Y. Limami; Cancers, 2023, 15, 5488
36. Z. Bi; W. Zhang; X. Yan; Biomed. Pharmacother., 2022, 151, 113180
37. Z. Yu; J. Guo; M. Hu; Y. Gao; L. Huang; ACS Nano, 2020, 14, 4816-4828
38. Z. Wang; L. Yang; Y. Xia; C. Guo; L. Kong; Biol. Pharm. Bull., 2015, 38(2), 277-284
39. C. Tomuleasa; O. Soritau; D. Rus-Ciuca; H. Ioani; S. Susman; M. Petrescu; T. Timis; D. Cernea; G. Kacso; A. Irimie; I. S. Florian; J. Buon., 2010, 15(3), 583-591
40. R. Cailleau; R. Young; M. Olive; W. J. Reeves Jr.; J. Natl. Cancer. Inst., 1974, 53(3), 661-674
41. R. Watkins; L. Wu; C. Zhang; R. M. Davis; B. Xu; Int. J. Nanomedicine, 2015, 10, 6055-6074
42. K. de Vries; M. Strydom; V. Steenkamp; J. Herb. Med., 2018, 11, 71-77
43. V. Sanna; N. Pala; G. Dessi; P. Manconi; A. Mariani; S. Dedola; M. Rassu;
C. Crosio; C. Iaccarino; M. Sechi; Int. J. Nanomedicine, 2014, 9, 4935-4951
44. M. A. Ujica; I. Mang; O. Horovitz; A. Mocanu; M. Tomoaia-Cotisel; Studia Univ. Babes-Bolyai, Chem., 2025, 70 (1), 47-63
45. R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications, Academic Press, London, 1981, pp. 363-369
46. S. Y. Park; S. Y. Chae; J. O. Park; K. J. Lee; G. Park; Oncol. Rep., 2016, 35(6), 3248-3256
47. W. Wang; L. Zhang; T. Chen; W. Guo; X. Bao; D. Wang; B. Ren; H. Wang; Y. Li; Y. Wang; S. Chen; B. Tang; Q. Yang; C. Chen; Molecules, 2017, 22(11), 1814
48. Hakeem AN; El-Kersh DM; Hammam O; Elhosseiny A; Zaki A; Kamel K; Yasser L; Barsom M; Ahmed M; Gamal M; Attia YM; Sci Rep. 2024, 14,18181
49. F. Pistollato; S. Bremer-Hoffmann; G. Basso; S. S. Cano; I. Elio; M. M. Vergara; F. Giampieri; M. Battino; Targ. Oncol., 2016, 11(1),1-16
50. S. Jeong; S. Jung; G. S. Park; J. Shin; J. W. Oh; Bioengineered, 2020, 11(1), 791-800
51. S. Diehl; G. Hildebrandt; K. Manda; Int. J. Mol. Sci., 2022, 23(15), 8548
52. T. A. Theodossiou; M. Ali; M. Grigalavicius; B. Grallert; P. Dillard; K. O. Schink; C. E. Olsen; S. Walchli; E. M. Inderberg; A. Kubin; Q. Peng; K. Berg; NPJ Breast Cancer, 2019, 5, 13
53. Y. Li; S. Upadhyay; M. Bhuiyan; F. H. Sarkar; Oncogene, 1999, 18(20),3166-3172
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.