Gold Nanoparticles Synthesized with Natural Compounds: Assesment of Antioxidant Activity After In Vitro Digestion

Authors

  • Dalina Diana ZUGRAVU (POP) Department of Physiology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 8, V. Babeş Str., 400012, Cluj-Napoca, Romania https://orcid.org/0000-0002-1108-9229
  • Teodora MOCAN Department of Physiology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 8, V. Babeş Str., 400012, Cluj-Napoca, Romania https://orcid.org/0000-0001-9925-0998
  • Andrei Vasile POP 2nd Medical Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania https://orcid.org/0009-0003-8579-0821
  • Valentina MOROSAN Department of Chemistry, Faculty of Chemistry and Chemical Engineering, “Babeş-Bolyai” University, 11, A. Janos Str., 400028, Cluj-Napoca, Romania. *Corresponding author: valentina.morosan@ubbcluj.ro https://orcid.org/0009-0000-4837-9441
  • Luminita DAVID Department of Chemistry, Faculty of Chemistry and Chemical Engineering, “Babeş-Bolyai” University, 11, A. Janos Str., 400028, Cluj-Napoca, Romania https://orcid.org/0000-0003-3604-6513
  • Simona Valeria CLICHICI Department of Physiology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 8, V. Babeş Str., 400012, Cluj-Napoca, Romania https://orcid.org/0000-0002-0046-0803

DOI:

https://doi.org/10.24193/subbchem.2024.2.06

Keywords:

gold nanoparticles, simulated gastrointestinal digestion, Cornus mas L., Sambucus nigra L., nitro oxidative stress, antioxidant capacity, phenolic content

Abstract

Currently, gold nanoparticles (GNPs) are considered an ideal delivery system due to their physiological stability, high bioactivity, and controlled release of biological component. Our primary objective was to comprehend the behavior of gold nanoparticles obtained with specific natural compounds in the gastrointestinal tract. We investigated the conduct of GNPs synthesized with natural compounds from Cornus mas L. (GNPs-CM) or Sambucus nigra (GNPs-E) fruits, during the oral, gastric, and intestinal phases of the in vitro simulated gastrointestinal digestion. Additionally, we assessed their antioxidant capacity, phenolic content, and their potential to mitigate damages caused by nitro-oxidative stress after each phase of in vitro digestion. Results indicated that both GNPs-CM and GNPs-E maintained stability throughout simulated digestion, with some observed differences between them. Upon measuring antioxidant capacity, the GNPs-CM exhibited the lowest percentage of inhibition from hydrogen donor measurements (12.08%) after the simulated intestinal phase. Conversely, the GNPs-E displayed the highest inhibition percentage (65.3%) after the simulated oral phase. Concerning phenolic content, GNPs-CM showed a polyphenol content of 39.53 mg of gallic acid equivalents (GAE)/L, decreasing during gastrointestinal phases. GNPs-Eexhibited a polyphenol content of 100.99 mg GAE /l, also decreasing during gastrointestinal phases.

References

Saha S, Xiong X, Chakraborty PK, Shameer K, Arvizo RR, Kudgus RA, Dwivedi SK, Hossen MN, Gillies EM, Robertson JD, Dudley JT, Urrutia RA, Postier RG, Bhattacharya R, Mukherjee P, ACS Nano, 2016, 10(12), 10636–10651.

V. H. Nguyen, B. J. Lee, Int. J. Nanomedicine, 2017, 12, 3137–3151.

Dalibera, NC, Oliveira AF, Azzoni AR, Microfluid Nanofluid, 2023, 27, 56.

C. Li, D. Li, G. Wan, J. Xu, W. Hou, Nanoscale Res. Lett., 2011, 6, 1–10.

Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Mol. Pharm. 2008, 1, 505–515.

Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR, Molecules. 2021, 26, 5823.

Kolanthai E, Fu Y, Kumar U, Babu B, Venkatesan AK, Liechty KW, Seal S. Wiley Interdiscip Rev Nanomed Nanobiotechnol.2022, 14, e1741.

Chen H, Dorrigan A, Saad S, Hare DJ, Cortie MB, Valenzuela SM, PLoS One. 2013, 8, e58208.

Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Angew. Chem. Int. Ed. 2010, 49, 3280–94.

Dinda B, Kyriakopoulos AM, Dinda S, Zoumpourlis V, Thomaidis NS, Velegraki A, Markopoulos C, Dinda M. J Ethnopharmacol. 2016, 193, 70–90.

Moldovan B, David L. Foods, 2020, 9(9), 1266.

Moldovan B, David L, Mini-Rev. Org. Chem. 2017, 14, 489-495.

Jurca T, Baldea I, Filip GA, Olteanu D, Clichici S, Pallag A, Vicas L, Marian E, Micle O, Muresan M. J. Physiol. Pharmacol. 2020, 71.

Mikaili P, Koohirostamkolaei M, Babaeimarzangou SS, Aghajanshakeri S, Moloudizargari M, Gamchi NS, Toloomoghaddam S. J. Pharm. Biomed. Sci. 2013, 35, 1732–8.

Bayram, HM, Arda Ozturkcan, S.; J. Funct. Foods, 2020, 75, 104252.

Uncini Manganelli RE, Zaccaro L, Tomei PE. J. Ethnopharmacol. 2005, 98,23–7.

Fazio A, Plastina P, Meijerink J, Witkamp RF, Gabriele B. Food Chem. 2013, 140, 817–24.

Lee J, Finn CE. J. Sci. Food Agric. 2007, 87, 2665–75.

Dawidowicz AL, Wianowska D, Baraniak B. LWT - Food Sci.Technol. 2006, 39, 308–15.

Arceusz A, Wesolowski M. Open Chem. 2015,13, 1196–208.

Ferreira-Santos, P; Badim, H; Salvador, ÂC; Silvestre, AJD; Santos, SAO; Rocha, SM; Sousa, AM; Pereira, MO; Wilson, CP; Rocha, CMR, Teixeira JA, Botelho C. Biomolecules. 2021, 11.

Matyas M, Hasmasanu MG, Zaharie G. Medicina 2019, 55, 720.

Liu H, Pierre-Pierre N, Huo Q. Gold Bull. 2012, 45, 187–95.

Pokrowiecki R, Wojnarowicz J, Zareba T, Koltsov I, Lojkowski W, Tyski S, Mielczarek A, Zawadzki P.; Int. J. Nanomed. 2019, 14, 9235-9257.

Sohal IS, Cho YK, O’Fallon KS, Gaines P, Demokritou P, Bello D. ACS Nano. 2018, 12, 8115–28.

Mikulic-Petkovsek M, Samoticha J, Eler K, Stampar F, Veberic R. J. Agric. Food Chem. 2015, 63, 1477–87.

Moldovan R, Mitrea DR, Florea A, Chiş IC, Suciu Ş, David L, Moldovan BE, Mureşan LE, Lenghel M, Ungur RA, Opris RV, Decea N, Clichici SV; Antioxidants (Basel). 2022, 11, 1343.

Baldea I, Florea A, Olteanu D, Clichici S, David L, Moldovan B, Cenariu M, Achim M, Suharoschi R, Danescu S, Vulcu A, Filip GA; Nanomedicine (Lond). 2020, 15, 55-75.

Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carrière F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Marze S, McClements DJ, Ménard O, Recio I, Santos CN, Singh RP, Vegarud GE, Wickham MS, Weitschies W, Brodkorb A. Food Funct. 2014, 5.

Janaszewska A, Bartosz G., Scand. J. Clin. Lab. Invest. 2002, 62, 231–6.

Singleton VL, Orthofer R, Lamuela-Raventós RM. Methods Enzymol. 1999, 299, 152–78.

Perde-Schrepler M, David L, Olenic L, Potara M, Fischer-Fodor E, Virag P, Imre-Lucaci F, Brie I, Florea A, J. Nanomater. 2016, 6986370.

Downloads

Published

2024-06-30

How to Cite

ZUGRAVU (POP), D. D., MOCAN, T., POP, A. V., MOROSAN, V., DAVID, L., & CLICHICI, S. V. (2024). Gold Nanoparticles Synthesized with Natural Compounds: Assesment of Antioxidant Activity After In Vitro Digestion. Studia Universitatis Babeș-Bolyai Chemia, 69(2), 81–96. https://doi.org/10.24193/subbchem.2024.2.06

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.