COMPARATIVE STUDY OF TWO COMMERCIAL STONEWARE PASTES FOR PLASTIC SHAPING BY POTTERY WHEEL
DOI:
https://doi.org/10.24193/subbchem.2023.1.07Keywords:
traditional ceramics, commercial stoneware, XRPD, TG-DTG-DTA, drying and firing shrinkage, moisture content, plasticity, potter’s wheelAbstract
Two commercial stoneware pastes traditionally used to produce ceramic objects were evaluated. The objective was the comparative characterization of the pastes and to find the most suitable to obtain fine ceramic objects using the pottery wheel. Both ceramic pastes were characterized by X-ray powder diffraction (XRPD), particle size analyses (laser diffraction) and thermal analyses (thermogravimetry-TG, its derivative-DTG, and differential thermal analysis-DTA). The technological properties like linear drying and firing shrinkage, moisture content and plasticity were also determined. The results showed that both pastes have appropriate properties making them suitable for plastic shaping by pottery wheel. In addition, the stoneware paper clay paste is “greener” due to its content of cellulose fibers which can come even from recycled paper.References
Kirk Othmer; Kirk-Othmer Encyclopedia Of Chemical Technology, 4th ed.; Volume 5, 1992, John Wiley &Sons, New York.
F. Ullmann; W. Gerhartz; Y. S. Yamamoto; F. T. Campbell; R. Pfefferkorn; J. F. Rounsaville; Ullman’s Encyclopedia Of Industrial Chemistry, 5th ed.; Volume A6, 1985, VCH, Weinheim, Federal Republic of Germany.
The Pottery Wheel, Available online: https://thepotterywheel.com/types-of-clay-for-pottery/ (accessed on 12 January 2023).
C. B. Carter; M. G. Norton, Ceramic Materials (Shaping and Forming). 2007, Springer, New York.
Eternal Tools. Ceramics: A Complete Guide, Available online: https://www.eternaltools.com/blog/ceramics (accessed on 12 January 2023)
C. B. Carter; M. G. Norton, Ceramic Materials: Science and Engineering, 2013, Springer, New York.
https://valentineclays.co.uk/product/stoneware-b17c/ (accessed on 12 January 2023)
J. Bennett, Studio Potter, Available online: https://studiopotter.org/beginning-your-exploration-fiber-clay (accessed on 12 January 2023).
https://www.sio-2.com/gb/ (accessed on 12 January 2023).
M. U. Taskiran; N. Demirkol; A. Capoglu; J. Eur. Ceram. Soc., 2005, 25, 293–300.
M. M. Jordán, A. Boix, T. Sanfeliu, C. de la Fuente, Appl. Clay Sci., 1999, 14, 225-234.
C. Baudin, in Encyclopedia of Materials: Technical Ceramics and Glasses, 2021, Editor-in-Chief: Michael Pomeroy, Elsevier.
W. Ochen, F. Mutonyi D'ujanga, B. Oruru, Sci. Afr., 2021, 11, e00648,
M. Lassinantti Gualtieri, M. Romagnoli, A. F. Gualtieri, J. Eur. Ceram. Soc., 2011, 31(5), 673–685.
M. Bayazit, O. Ekinci, AKU J. Sci. Eng. 2019, 19, 015704, 193-202.
L. Maritan, L. Nodari, C. Mazzoli, A. Milano, U. Russo, Appl. Clay Sci., 2006, 31, 1-15.
R. Palanivel; U.R. Kumar, Rom. Journ. Phys., 2011, 56, 195-208.
J. Dweck, J. Therm. Anal. Calorim. 2008, 92, 129–135.
F.A. Andrade, H.A. Al-Qureshi, D. Hotza, Appl. Clay Sci., 2011, 51(1–2), 1-7.
J. H. Van der Velden. Ziegelind. Int. 1979, 32(9), 532-542.
A. M. Querol, Bol. Soc. Esp. Ceram. Vidr. 1983, 22(5), 285-289.
L. Gagea, Ceramică de laborator. Lucrări și probleme (in Romanian), Ed. Casa Cărții de Știință, Cluj-Napoca, 2003.
A. Salem; S.H. Jazayeri; E. Rastelli; G. Timellini, J. Mater. Process. Technol. 2009, 209(3), 1240-1246.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.