THERMAL BEHAVIOUR OF COMPOSITE MATERIALS OBTAINED FROM RECYCLED TETRA PAK® BY THERMOPLASTING FORMING
DOI:
https://doi.org/10.24193/subbchem.2025.1.02Keywords:
Tetra Pak® waste, recycling, composite materials, thermal degradationAbstract
Tetra Pak® (TP) multilayer packaging consisting of paper, polyethylene (PE) and aluminum, are widely used as aseptic packages in the food and beverage industry. Consequently, large quantity of packaging waste is generated, and many efforts have been made for recycling. The aim of this work was to develop new composite materials from TP cartons waste by thermoplastic method at different temperatures ranging from 120 ºC to 140 ºC. The resulting material was characterized by thermogravimetric/differential thermal analyses (TG/DTA) and differential scanning calorimetry (DSC) measurements to establish the thermal behavior of the prepared composites. Based on these results, the degradation pathway of the composites obtained from TP waste was proposed. The results of the study show that the preparation of thermoplastic composites represents a promising recycling process. The thermal degradation temperature of the prepared composites establishes a limit for practical use, which prohibits the utilization of these materials at temperatures exceeding this threshold.
References
1. I. Russell; J. Kellershohn; S.K. Panda; Probiotic beverages, Academic Press, Amsterdam, Netherlands, 2021, pp. 441-466.
2. F. Lecheb; S. Bougherara; K. Delleci; L. Djoubani; M. Lazazi; B. Rahal; Algerian J. Env. Sc. Technology, 2022, 8:3, 2569-25773.
3. A. Castro; J. Araújo; J. Carvalho; Proceedings paper “IMECE2014-38880,” paper No: IMECE2014-38880, V014T11A025, pp. 1-6, 2017.
4. M.I.P. Maduwantha; R.A. Jayasinghe; Int. J. Eng. Sci., 2023, 7(1), 1-9.
5. C.M.A. Lopes; M.I. Felisberti; J. Appl. Polym. Sci. 2006, 101, 3183-3191.
6. J. Zawadiak; S. Wojciechowski; T. Piotrowski; A. Krypa; Am. J. Chem. Eng., 2017, 5(3), 37-42.
7. N.F. Da Cruz; P. Simões; R.C. Marques; Resour. Conserv. Recycl., 2014, 85, 1-4.
8. A.R. Elgie; S.J. Singh; J.N. Telesford, Resour. Conserv. Recycl. 2021, 164, 105170.
9. A. Bartl, Waste Manag. Res., 2014, 32, 3-18.
10. H. Dong; F. Yu; Z. Bi; C. Zhang; X. Liu; Y. Geng; S. Ohnishi; H. Li; Resour. Conserv. Recycl., 2024, 202, 107355.
11. M. Karaboyaci; G.G. Elbek; M. Kilic; A. Sencan, EJENS, 2017, 2(1), 126-129.
12. G. Martínez-Barrera; M. Martínez-López; N. González-Rivas; J.J. del Coz-Diaz; L. Ávila-Córdoba; J.M.L.d. Reis; O. Gencel; Construct. Build. Mater., 2017, 157, 1018-1023.
13. A.K. Figen; E. Terzi; N. Yilgör; S.N. Kartal; S. Pișkin; Korean J. Chem. Eng. 2013, 30(4), 878-890.
14. S. Nishad; M. Ouederni; I. Krupa; Energy Built Environ. 2025, 6(3), 455-465.
15.Y. Ciawi; S.G. Tonyes; N.M. Utami Dwipayanti; Acad. Environ. Sci. Sustain. 2025, 2(1), 1-12.
16. A. Korkmaz; J. Yanik; M. Brebu; C. Vasile, Waste Manag., 2009, 29, 2836-2841.
17. A.M. Gomboș; O. Nemeș; V.F. Soporan; A. Vescan, Studia UBB Chemia, 2008, 53(3), 81-88.
18. M. Irgolič; M. Čolnik; P. Kotnik; M. Škerget, Polymers, 2024, 16, 1879.
19. J. Haydary; D. Susa, Chem. Pap. 2013, 67(12) 1514-1520.
20. N. Yılgör; S.N. Kartal; C. Houtman; E. Terzi; A. Kantur; C. Köse; S. Piskin, https://www.academia.edu/3389259/, accessed on 20.02.2025.
21. C. Sergi; J. Tirillò; T. Valente; F. Sarasini, J. Compos. Sci., 2022, 6, 72.
22. F. Cravero; A. Frache, Polymers, 2020, 12, 2357.
23. M.A. Hidalgo-Salazar; M.F. Munõz; J.H. Mina, Int. J. Polym. Sci., 2015, Article ID 386325, 1-8.
24. I. Georgiopoulou; G.D. Pappa; S.N. Vouyiouka; K. Magoulas, Resour. Conserv. Recycl., 2021, 165, 105268.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.