CHEMICAL CHARACTERIZATION AND DETERGENT POTENTIAL OF CHELIDONIUM MAJUS EXTRACTS

Authors

  • Anca BECZE National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., RO-400293 Cluj-Napoca, Romania. *Corresponding author: anca.naghiu@icia.ro https://orcid.org/0000-0003-1418-689X
  • Dorina SIMEDRU National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., RO-400293 Cluj-Napoca, Romania https://orcid.org/0000-0003-4914-6986
  • Liviu BÎLTEANU BEST CLEAN EUROPE LtD., located in Florești, Cluj County, Romania https://orcid.org/0000-0002-3781-2892
  • Paul UIUIU Department of Fundamental Sciences, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Street, RO-400372 Cluj-Napoca, Romania https://orcid.org/0000-0002-6835-3414

DOI:

https://doi.org/10.24193/subbchem.2025.2.04

Keywords:

Chelidonium majus, accelerated solvent extraction, ultrasound-assisted extraction, alkaloids, flavonoids, polyphenols, antimicrobial activity, antioxidant capacity, extraction efficiency

Abstract

The present study investigates the impact of different extraction methods—accelerated solvent extraction (ASE), ultrasound-assisted extraction (UAE), and maceration on the yield, phytochemical composition, antioxidant activity, and antimicrobial potential of Chelidonium majus extracts. ASE demonstrated the highest extraction yield (85.7%) and alkaloid content (5.4 mg AE/ml), correlating with enhanced antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans (lowest MIC values: 3.12%, 2.50%, and 6.25%, respectively). UAE resulted in the highest polyphenol content (15.2 mg GAE/ml) and antioxidant capacity (12.8 ± 1.5 µmol Trolox/ml), suggesting its effectiveness in preserving antioxidant compounds. Maceration produced the lowest bioactive compound yield and biological activity. These findings indicate that ASE is optimal for antimicrobial applications, while UAE is preferable for antioxidant-enriched extracts. The results provide valuable insights for optimizing C. majus extraction in pharmaceutical, food, and cosmetic formulations.

References

1. X.L. Li, Y.P. Sun, M. Wang, Z.B. Wang, H.X. Kuang; Front. pharmacol., 2024, 15, p.1440979.

2. A. E. Segneanu, G. Vlase, T. Vlase, M. V. Ciocalteu, C. Bejenaru, G. Buema & S. Boia; Plants, 2024, 13(5), 734.

3. M. Terzic, S. Fayez, N. M. Fahmy, O. A. Eldahshan, A. I. Uba, S. K. M. Ponniya, S. Selvi, I. Koyuncu, Ö. Yüksekdağ, G. Zengin; Fitoterapia, 2024, 174, p.105835.

4. M. Strzemski, S. Dresler, B. Podkościelna, K. Skic, I. Sowa, D. Załuski, R. Verpoorte, S. Zielińska, P. Krawczyk, M. Wójciak; Molecules, 2022, 27(9), p.2815.

5. T. Tuzimski, A. Petruczynik, T. Plech, B. Kaproń, A. Makuch-Kocka, M. Szultka-Młyńska, J. Misiurek, B. Buszewski, M. Waksmundzka-Hajnos; Int. J. Mol. Sci. 2023, 24(7), p.6360.

6. M. Zwerger, L. Boeck, J. Manzl, S. Schwaiger, M. Ganzera; Planta Med., 2024, 90(07/08), pp.523-533.

7. G. Göger; Chelidonium majus L.. In: Novel Drug Targets With Traditional Herbal Medicines: Scientific and Clinical Evidence 2022, Cham: Springer International Publishing, 2022, pp. 121-129.

8. N. Stefanowski, H. Tkachenko, N. Kurhaluk; Medicinal Herbs: from Past Experience to New Technologies: Proceedings of Ninth International Scientific and Practical Conference, 2021, pp. 154-160.

9. T. Bilušić, I. Šola, V. Čikeš Čulić; Food Technol. Biotechnol., 2024, 62(1), pp.49-58.

10. A. Danila, M. Costea, L. Profire, C.M. Rimbu, M. Baican, F. Lupascu, S. M. Tatarusanu, B. S. Profire, E. I. Muresan; Polymers, 2022, 14(15), p.3194.

11. D. Yue, D. Zheng, Y. Bai, L. Yang, J. Yong, Y. Li; Phytother. Res., 2024, 38(5), pp.2518-2538.

12. E. Gayathiri, P. Prakash, N. Karmegam, S. Varjani, M. K. Awasthi, B. Ravindran; Agronomy, 2022, 12(3), p.662.

13. M. Ayub, M. H. D. Othman, I. U. Khan, S. K. Hubadillah, T. A. Kurniawan, A. F. Ismail, M. A. Rahman, J. Jaafar; J. Clean. Prod., 2021, 295, p.126296.

14. A. K. Chaudhari, V. K. Singh, A. Kedia, S. Das, N. K. Dubey; Environ. Sci. Pollut. Res., 2021, 28, pp.18918-18940.

15. Y. Kunatsa, D. R. Katerere; Plants, 2021, 10(5), p.842.

16. M. E. A. Benarbia, P. Gaignon, C. Manoli, P. Chicoteau; Front. Vet. Sci., 2022, 9, p.946576.

17. J. Lv, S. Liu, C. Hu, L. Ding, H. Wang, X. Li, F. Yang, Q. Shen, H. Zhang, G. Ma, S. Zhang; Front. Plant Sci., 2025, 16, p.1535170.

18. S. Rai, E. Acharya-Siwakoti, A. Kafle, H. P. Devkota, A. Bhattarai; Sci, 2021, 3(4), p.44.

19. M. R. Wylie, D. S. Merrell; Front. Pharmacol., 2022, 13, p.891535.

20. K. D. Rakholiya, M. J. Kaneria, A. M. Shaikh, S. S. Wandhekar, S. V. Chanda; Medicinal plants as alternative sources of therapeutics against multidrug resistant pathogenic microorganisms based on their antimicrobial potential and synergistic properties. In: Fighting multidrug resistance with herbal extracts, essential oils and their components, (Second Edition), Academic Press, 2025, Chapter 12, pp.271-289.

21. E. Guzmán, A. Lucia; Cosmetics, 2021, 8(4), p.114.

22. P. Bolouri, R. Salami, S. Kouhi, M. Kordi, B. Asgari Lajayer, J. Hadian, T. Astatkie; Molecules, 2022, 27(24), p.8999.

23. M. Angane, S. Swift, K. Huang, C. A. Butts, S. Y. Quek; Foods, 2022, 11(3), p.464.

24. A. Mutlu‐Ingok, G. Catalkaya, E. Capanoglu, F. Karbancioglu‐Guler; Food front., 2021, 2(4), pp.508-518.

25. S. Kyoung-Sun, W. Y. Kyeong; Res Crops., 2023, 24(2), pp.378-383.

26. C. Gosset-Erard, M. Zhao, S. Lordel-Madeleine, S. Ennahar; Food Chem., 2021, 352, p.129396.

27. K. Szentmihályi, I. Szőllősi-Varga, M. Then; Eur. Chem. Bull., 2021, 10(1), 58-66.

28. P. Krzyżek, A. Junka, W. Słupski, A. Dołowacka-Jóźwiak, B. J. Płachno, A. Sobiecka, A. Matkowski, G. Chodaczek, T. Płusa, G. Gościniak, et al.; PathogensI, 2021, 10, 1033.

29. A. E. Segneanu, G. Vlase, T. Vlase, M. V. Ciocalteu, C. Bejenaru, G. Buema, L. E. Bejenaru, E. R. Boia, A. Dumitru, S. Boia, 2024. Romanian Wild-Growing Chelidonium majus—An emerging approach to a potential antimicrobial engineering carrier system based on AuNPs: In Vitro investigation and evaluation. Plants, 13(5), p.734.

Downloads

Published

2025-06-20

How to Cite

BECZE, A., SIMEDRU, D., BÎLTEANU, L., & UIUIU, P. (2025). CHEMICAL CHARACTERIZATION AND DETERGENT POTENTIAL OF CHELIDONIUM MAJUS EXTRACTS. Studia Universitatis Babeș-Bolyai Chemia, 70(2), 53–65. https://doi.org/10.24193/subbchem.2025.2.04

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.