INVESTIGATION OF OPTICAL PROPERTIES AND SOLID-STATE STRUCTURE OF THIOPHENE-CONTAINING TRIARYLAMINE DERIVATIVES
DOI:
https://doi.org/10.24193/subbchem.2025.2.01Keywords:
triarylamine, absorption and emission spectra, single crystal X-ray diffractometry, C-H⋅⋅⋅π and heteroatom⋅⋅⋅π contactsAbstract
The optoelectronic properties of some thiophene-containing triarylamines derived formally from triphenyl amine by enlarging one, two, or all phenyl groups with phenyl, thiophene-phenyl, bithiophene, or terthiophene units, along with the molecular structure and the supramolecular arrangement of the molecules in the lattices, were revealed by spectroscopic and, in the case of two of the compounds, single crystal X-ray diffractometry investigations. This study confirms that solid-state interactions and conformations significantly influence the absorption and emission characteristics of these compounds, essential factors in designing efficient photovoltaic materials.
References
1. R. Rybakiewicz; M. Zagorska; A. Pron; Chem. Pap. 2017, 71 (2), 243–268
2. P. Blanchard; C. Malacrida; C. Cabanetos; J. Roncali; S. Ludwigs; Polym. Int. 2019, 68 (4), 589–606
3. J. Wang; K. Liu; L. Ma; X. Zhan; Chem. Rev. 2016, 116 (23), 14675–14725
4. J. Roncali; P. Leriche; P. Blanchard; Adv. Mater. 2014, 26 (23), 3821–3838
5. A. Diac; D. Demeter; M. Allain; I. Grosu; J. Roncali; Chem. – Eur. J. 2015,
21 (4), 1598–1608
6. D. Demeter; S. Mohamed; A. Diac; I. Grosu; J. Roncali; ChemSusChem. 2014, 7 (4), 1046–1050
7. A. Mahmood; Sol. Energy. 2016, 123, 127–144
8. P. Agarwala; D. Kabra; J. Mater. Chem. A. 2017, 5 (4), 1348–1373
9. J. Kwak; W. K. Bae; M. Zorn; H. Woo; H. Yoon; J. Lim; S. W. Kang; S. Weber; H.-J. Butt; R. Zentel; et al.; Adv. Mater. 2009, 21 (48), 5022–5026
10. J.-X. Liang; Z.-H. Pan; K. Zhang; D. Yang; J.-W. Tai; C.-K. Wang; M.-K. Fung; D. Ma; J. Fan; Chem. Eng. J. 2023, 457, 141074
11. Q. Zhang; J. Jiang; Z. Xu; D. Song; B. Qiao; S. Zhao; S. Wageh; A. Al-Ghamdi; RSC Adv. 2021, 11 (39), 24436–24442
12. L. M. Nhari; R. M. El-Shishtawy; A. M. Asiri; Dyes Pigments. 2021, 193, 109465
13. H. E. Okda; S. E. Sayed; R. C. M. Ferreira; R. C. R. Gonçalves; S. P. G. Costa; M. M. M. Raposo; R. Martínez-Máñez; F. Sancenón; New J. Chem. 2019, 43 (19), 7393–7402
14. H. Chen; P. Yang; Y. Li; L. Zhang; F. Ding; X. He; J. Shen; Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2020, 224, 117384
15. T. Harimoto; Y. Ishigaki; Chem. – Eur. J. 2025, 31 (3), e202403273
16. A. Benitz; M. B. Thomas; Y. Jang; V. Nesterov; F. D’Souza; J. Chem. Sci. 2021, 133 (3), 71
17. B. Lv; Z. Wang; Y. Wu; Y. Zheng; Z. Cui; J. Li; W. Gu; J. Hazard. Mater. 2024, 469, 134105
18. V. Parthasarathy; S. Fery-Forgues; E. Campioli; G. Recher; F. Terenziani; M. Blanchard-Desce; Small. 2011, 7 (22), 3219–3229
19. K. Amro; J. Daniel; G. Clermont; T. Bsaibess; M. Pucheault; E. Genin; M. Vaultier; M. Blanchard-Desce; Tetrahedron. 2014, 70 (10), 1903–1909
20. A. J. Sindt; B. A. DeHaven; R. L. Goodlett; J. O. Hartel; P. J. Ayare; Y. Du; M. D. Smith; A. K. Mehta; A. M. Brugh; M. D. E. Forbes; C. R. Bowers; A. K. Vannucci; L. S. Shimizu; J. Am. Chem. Soc. 2020, 142 (1), 502–511
21. J. Yang; X. Wu; J. Shi; B. Tong; Y. Lei; Z. Cai; Y. Dong; Adv. Funct. Mater. 2021, 31 (52), 2108072
22. W. Dai; X. Niu; X. Wu; Y. Ren; Y. Zhang; G. Li; H. Su; Y. Lei; J. Xiao; J. Shi; B. Tong; Z. Cai; Y. Dong; Angew. Chem. Int. Ed. 2022, 61 (13), e202200236
23. D.-F. Bogoșel; G.-I. Giurgi; A. Balan; A. Pop; I. Grosu; A. P. Crișan; A. Terec; Org. Electron. 2025, 141, 107212
24. S. Noureen; P. Devibala; P. M. Imran; S. Nagarajan; Synth. Met. 2024, 302, 117541
25. N. Terenti; G.-I. Giurgi; A. P. Crişan; C. Anghel; A. Bogdan; A. Pop; I. Stroia; A. Terec; L. Szolga; I. Grosu; J. Roncali; J. Mater. Chem. C. 2022, 10 (14), 5716–5726
26. A. Bondi; J. Phys. Chem. 1964, 68 (3), 441–451
27. F. C. Grozema; R. W. J. Zijlstra; M. Swart; P. Th. van Duijnen; Int. J. Quantum Chem. 1999, 75 (4–5), 709–723
28. Q. J. Shen; X. Pang; X. R. Zhao; H. Y. Gao; H.-L. Sun; W. J. Jin; CrystEngComm. 2012, 14 (15), 5027-5034
29. M. Balog; I. Grosu; G. Plé; Y. Ramondenc; E. Condamine; R. A. Varga; J. Org. Chem. 2004, 69 (4), 1337–1345
30. I. G. Grosu; L. Pop; M. Miclǎuş; N. D. Hǎdade; A. Terec; A. Bende; C. Socaci; M. Bărboiu; I. Grosu; Cryst. Growth Des. 2020, 20 (5), 3429–3441
31. L. Pop; I. G. Grosu; M. Miclăuş; N. D. Hădade; A. Pop; A. Bende; A. Terec; M. Bărboiu; I. Grosu; Cryst. Growth Des. 2021, 21 (2), 1045–1054
32. A. Vinod Kumar; P. Pattanayak; A. Khapre; A. Nandi; P. Purkayastha; R. Chandrasekar; Angew. Chem. Int. Ed. 2024, 63 (40), e202411054
33. W. Xu; M. M. S. Lee; Z. Zhang; H. H. Y. Sung; I. D. Williams; R. T. K. Kwok; J. W. Y. Lam; D. Wang; B. Z. Tang; Chem. Sci. 2019, 10 (12), 3494–3501
34. A. M. Raynor; A. Gupta; C. M. Plummer; S. L. Jackson; A. Bilic; H. Patil; P. Sonar; S. V. Bhosale; Molecules. 2015, 20 (12), 21787–21801
35. A. Bende; I. Grosu; I. Turcu; J. Phys. Chem. A. 2010, 114 (47), 12479–12489
36. M. Cîrcu; V. Paşcanu; A. Soran; B. Braun; A. Terec; C. Socaci; I. Grosu; CrystEngComm. 2012, 14 (2), 632–639
37. G. M. Sheldrick; Acta Crystallogr. Sect. C Struct. Chem. 2015, 71 (1), 3–8
38. A. L. Spek; J. Appl. Crystallogr. 2003, 36 (1), 7–13
39. DIAMOND – Visual Crystal Structure Information System, 2001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.