GOLD-DECORATED TITANIA NANOTUBES WITH GRAPHENE FOR VISIBLE LIGHT-MEDIATED AMOXICILLIN PHOTODEGRADATION

Authors

  • Alexandra URDA National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat 67-103 str., Cluj-Napoca, Romania; Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0002-4513-4702
  • Diana LAZAR National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat 67-103 str., Cluj-Napoca, Romania https://orcid.org/0009-0008-5308-8137
  • Dragos COSMA National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat 67-103 str., Cluj-Napoca, Romania https://orcid.org/0000-0001-9276-1314
  • Ion GROSU Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0003-3754-854X
  • Crina SOCACI National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat 67-103 str., Cluj-Napoca, Romania. *Corresponding authors: crina.socaci@itim-cj.ro; ion.grosu@ubbcluj.ro https://orcid.org/0000-0002-0676-2706

DOI:

https://doi.org/10.24193/subbchem.2025.2.10

Keywords:

amoxicillin, titania nanotubes, reduced graphene, nitrogen-doped graphene, photodegradation

Abstract

The degradation of amoxicillin was accomplished using TiO2 nanotubes photocatalysts decorated with Au nanoparticles and containing reduced graphene or nitrogen-doped graphene under visible light exposure. The structural and morphological characterization confirmed the presence of gold nanoparticles and graphene, and the optical properties showed light absorption into visible region. The best results in the degradation of amoxicillin (up to 60%) were reached in the presence of the photocatalyst with nitrogen-doped graphene. A basics kinetic study showed a physical adsorption of the amoxicillin on the catalyst surface, and that the photodegradation step followed the pseudo-first kinetic model with the apparent kinetic constant of 0.0039 min-1.

References

1. A. Malik, E. Grohmann, Environmental Protection Strategies for Sustainable Development, Springer Netherlands, 2012, p. 12.

2. S.C. Ameta, R. Ameta, Advanced oxidation processes for waste water treatment-emerging green chemical technology, Chapter 6 – Photocatalysis, Academic Press, 2018, 135-175.

3. N. Farooq, P. Kallem, Z. ur Rehman, M. I. Khan, R. K. Gupta, T. Tahseen, Z. Mushtaq, N. Ejaz, A. Shanableh, Recent trends of titania (TiO2) based materials: A review on synthetic approaches and potential applications, Journal of King Saud University – Science 2024, 36, 103210.

4. O. Carp, C.L. Huisman, A. Reller, Prog Solid State Ch 2004, 32, 33–177.

5. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, Jeremy, W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl Catal B 2012, 125, 331-349.

6. M.J. Wu, T. Bak, P.J. O’Doherty, M.C. Moffitt, J. Nowotny, T.D. Bailey, C. Kersaitis, Int J Photochem 2014, 1-9.

7. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, J Phys Chem Solids 2002, 63, 10, 1909-1920.

8. S. Linic, P. Christopher, D.B. Ingram, Nat Mater 2011, 10, 12, 911-921.

9. E. Bae, W. Choi, J. Park, H.S. Shin, S. Bin Kim, J.S. Lee, J Phys Chem B 2004, 108, 37, 14093-14101.

10. H. Park, Y. Park, W. Kim, W. Choi, J Photochem Photobiol C: Photochem Rev 2013, 15, 1-20.

11. M. Minella, D. Fabbri, P. Calza and C. Minero, Curr Opin Green Sust Chem 2017, 6, 11–17.

12. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal Jr, K.J. Balkus, Catalysis 2012, 2, 949–956.

13. J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Adv Funct Mater 2010, 20, 23, 4175–4181.

14. A. Trapalis, N. Todorova, T. Giannakopoulou, N. Boukos, T. Speliotis, D. Dimotikali, J. Yu, Appl Catal B 2016, 180, 637–647.

15. A. Urda, T. Radu, C. Socaci, V. Floare-Avram, D. Cosma, M. C. Rosu, M. Coros, S. Pruneanu, F. Pogacean, J. Photochem. Photobiol. A 2022, 425, 113701.

16. D. Cosma, A. Urda, T. Radu, M.C. Rosu, M. Mihet, C. Socaci, Molecules 2022, 27, 18, 5803.

17. D. Cosma, M.-C. Roşu, C. Socaci, A. Urda, T. Radu, A. Turza, M. Dan, R. M. Costescu, K. R. Gustavsen, O. Dobroliubov, K. Wang, Journal of Environmental Chemical Engineering 2024, 12, 3, 112885.

18. A. Urda, T. Radu, K. R. Gustavsen, D. Cosma, M. Mihet, M. C. Rosu, A. Ciorîța, A. Vulcu, K. Wang, C. Socaci, How is graphene influencing the electronic properties of NiO-TiO2 heterojunction?, Journal of Physics D: Applied Physics 2025, 58, 015103.

19. A.T. Kuvarega, B.B. Mamba, Crit Rev Solid State Mater Sci 2016, 295-346.

20. P. Huo, P. Zhao, Y. Wang, B. Liu, M. Dong, Energies 2018, 11, 630.

21. H. Pan, X. Zhao, Z. Fu, W. Tu, P. Fang, H. Zhang, Appl Surf Sci 2018, 442, 547–555.

22. H. Xu, M. Ding, W. Chen, Y. Li, K. Wang, Sep Purif Technol 2018, 195, 70–82.

23. D. Ding, B. Wang, X. Zhang, J. Zhang, H. Zhang, X. Liu, Z. Gao, Z. Yu, Ecotoxicol. Environ. Saf. 2023, 254.

24. S.M. Al-Jubouri, H.A. Sabbar, E.M. Khudhair, S.H. Ammar, S. Al Batty, S. Yas Khudhair, A.S. Mahdi, J. Photochem. Photobiol. A Chem. 2023, 442.

25. J. Liu, K.Y. Chen, J. Wang, M. Du, Z.Y. Gao, C.X. Song, Journal of Chemistry 2020, 2928189.

26. P. Martins, S. Kappert, H.N. Le, V. Sebastian, K. Kühn, M. Alves, L. Pereira, G. Cuniberti, M. Melle-Franco, S. Lanceros-Méndez, Catalysts 2020, 10, 234.

27. N. Liu, X. Chen, J. Zhang, J.W. Schwank, Catalysis Today 2014, 225, 34– 514.

28. D. Chen L. Zou, S. Li, F. Zheng, Scientific Reports 2016, 6, 20335.

29. C. Turchi, D.F. Ollis J. Catal. 1990, 122, 178–192.

Downloads

Published

2025-06-20

How to Cite

URDA, A., LAZAR, D., COSMA, D., GROSU, I., & SOCACI, C. (2025). GOLD-DECORATED TITANIA NANOTUBES WITH GRAPHENE FOR VISIBLE LIGHT-MEDIATED AMOXICILLIN PHOTODEGRADATION. Studia Universitatis Babeș-Bolyai Chemia, 70(2), 149–161. https://doi.org/10.24193/subbchem.2025.2.10

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.