CRYSTAL VIOLET DYE BIOSORPTION AND PHYTOEXTRACTION USING LIVING SALVINIA NATANS AND SALVINIA NATANS POWDER: A COMPARATIVE STUDY
Keywords:
Salvinia natans, Crystal violet, biosorption, phytoextraction, surface characteristicAbstract
The main focus of this work was to investigate the biosorption behavior of living and powder Salvinia natans on Crystal violet (CV) removal. The effects of process parameters were studied in order to determine the optimum phytoremediation conditions. Adsorption isotherm and kinetic models for both processes were used to analyze the equilibrium data. It was found that Langmuir isotherm and pseudo-second-order kinetics models describe better the CV removal process. Thermodynamic parameters showed that the biosorption and phytoextraction process is endothermic. From the obtained results it can be concluded that S. natans powder showed higher bisorption capacity on CV removal compared to the living one.
References
H.A. Mekkawy, M.O. Ali, and A.M. El-Zawahry, Toxicol Lett, 1998, 95, 155–161.
E.A. Clarke and R. Anliker, Organic dyes and pigments, New York, 2005, p 181–215.
G. Mishra and M.A. Tripathy, Colourage, 1993, 40, 35–38.
A.O. Akeem, and G. Mustafa, Toxicol Environ Chem, 2014, 96, 837-848.
N.M Mahmoodi, J. Chem. Eng. Data, 2011, 56, 2802–2811.
Arunagiri, P. Prabisha, and R. Kalaichelvi, J Thermodynam Article ID, 2014, 670186.
J. Mittal, A. Malviya, A.D. Kaur, and V.K.Gupta, J Colloid Interface Sci, 2010, 343, 463–473.
C. Chen, J.T. Kuo, H.A. Yang, and Y.C. Chung, Chemosphere, 2013, 92, 695–701.
R. Ahmad, J Hazard Mater, 2009, 171, 767–773.
S. Khan, A. Arunarani, and P. Chandran, Clean – Soil Air Water, 2015, 43, 67–72.
I.M. Banat, P. Nigam, D. Singh, and R. Marchant, Bioresour Techno, 1996, 58, 217–227.
S. Ahluwalia and D. Goyal, Bioresour Technol, 2007, 98, 2243–2257.
D. Sud, G. Mahajan, and M.P. Kaur, Bioresour Technol, 2008, 99, 6017-6027.
G. Blazques, L. Martin, T. Guadalupe and M. Calero, Chem Eng J, 2011, 170-177.
B. Nagy, A. Maicaneanu, C. Indolean, S. Burca, L. Silaghi-Dumitrescu, and C. Majdik, Acta Chim Slov, 2013, 60, 263- 273.
M. Momcilovic, M. Purenovic, A. Bojic, A. Zarubica, and M. Randelovic, Desalination, 2011, 276, 53-59
N. Meunier, J. Laroulandie, J.F. Blais, and R.D. Tyagi Bioresour Technol, 2003, 90, 255–263.
B.H. Hameed, and M.I. El-Khaiary J Hazard Mater, 2008, 162, 305-311.
E.G. Mueller, Mol Biology, 1996, 7, 1805-1813
Raskin, and D. Ensley, New York,“Phytoremediation of toxic metals, 2000 p.12-33.
P.L. Gratão, M.N.V. Prasad, P.F. Cardoso, P.J. Lea, and R.A. Azevedo, J Plant Physiol, 2005, 17 5, 53-64.
Marques, O. Anto´Nio, S. Rangel, and M.L. Paula, Environ Sci Techno.l, 2009, 39, 622–654.
R.A. Usman, R. Alkredaa, and M.I. Al-Wabel, Ecotox Environ Safe. 2014, 97, 263–270.
R.L. Chaney, K.M. Malik, Y.M. Li, S.L. Brown, E.P. Brewer, and J.S. Angle Curr Opin Biotechnol. 1997, 8, 279–284.
D.E. Salt and U. Kramer, Phytoremediaton of Toxic Metals, Berlin, 1999 p. 231–246.
W.C. Wang and Km. Freemark, Ecotox Environ Saf, 1995, 30, 289–301.
S. Aubert and J.P. Schwitzguebel Wat Res, 2004, 381, 3569–3575.
H.B.L. Pettersson, H.A. Johnston, and A.S. Murray, J Environ Radioac, 1993, 19, 85–108.
R.A. Overall and D.L. Parry, Environ Pollut, 2004, 132, 307–320.
U.N. Rai, S. Sinha, R.D. Tripathi, and P. Chandra, Ecol Eng, 1995, 5 ,5-12.
O. Keskinkan, Asian J Chem, 2005, 17, 1507-1515.
M. Mkandawire and E.G. Dudel, Sci Total Environ, 2005, 336, 81–90.
Török, E. Buta, L. Silaghi-Dumitrescu, C. Indolean, C. Majdik, and S. Tonk, Acta Chim Slov, 2015, 62, 452–461.
S. Radic, D. Stipanicev, P. Cvjetko, R.M. Marijanovic´, S. Sirac, B. Pevalek, and M. Pavlica, Ecotox Environ Saf, 2011, 74, 182–187.
G. Sánchez-Galván, O. Monroy, G. Gómez, and E.J. Olguín, Water Air and Soil Pollu, 2008, 194, 77–90.
G. Annadurai, L.Y. Ling, and J.F. Lee, J Hazard Mater, 2008, 152, 337-346.
D. Zhao, K.R. Reddy, V.G. Kakani, and V.R. Reddy, Eur J Agron, 2005, 22, 391-403.
R. Bligny, E. Gout, W. Kaiser, U. Heber, and D. Walker, R. Douce, Biochim Biophys Acta (BBA) – Bioenergetics, 1997, 1320, 142-152.
B. Nagy, C. Mânzatu, A. Török, C. Indolean, A. Măicăneanu, S. Tonk, and C. Majdik, Rev Roum Chim, 2015, 60, 257-264.
Y.S. Ho and G. McKay, Process Biochem, 1999, 34, 451–465.
Ho YS, McKay G, and Wase DAJ, Ads Sci Technol, 2000, 18, 639–650.
M.E. Argun, S.C. Dursun, and M. Ozdemir Karata, J Hazard Mater, 2007, 141, 77-85.
Langmuir, J Am Chem Soc, 1918, 40, pp 1361-1367.
H.M.F. Freundlich, Über die Adsorption in Lösungen, 1906, pp 385-470.
M.J. Temkin and V. Pyzhev, Acta Physiochim, 1940, 12, 217-222.
M.M. Dubinin, E.D. Zaverina, and L.V. Radushkevich, Zhurnal Fizicheskoi Khimii, 1947, 21, 1351–1362.
E. Gîlca, A. Maicaneanu, P. Ilea, Cent. Eur J. Chem, 2014, 12, 821-828.
A.U. Itodo, and H.U. Itodo, J Life Sci, 2010, 7, 31–39.
L.K. Fraji, D.M. Hayer, and T.C. Werner, J Chem Educ, 1992, 69, 424–427.
E. Eren, O. Cubuk, H. Ciftci, B. Eren, and B. Caglar, Desalination, 2010, 252, 88-96.
L. Taiz and E. Zeiger, Plant Physiology, 2002, 35, 68-72.
T. Akar, S. Celik, and S.T. Akar, Chem Eng J, 2010, 160, 466–472.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.