Thermo-Catalytic Pyrolysis of Lignosulfonate from the Sulfite Process
DOI:
https://doi.org/10.24193/subbchem.2023.4.04Keywords:
catalytic pyrolysis, lignosulfonate, sulfite process, bimetallic catalystAbstract
This paper shows the results of thermal and catalytic pyrolysis of conditioned lignosulfonate from the sulfite process, with a specific focus on the analysis of bio-oil and biochar. The conditioning of lignosulfonate was made by drying and grinding in a planetary ball mill. Thermal and catalytic pyrolysis of conditioned lignosulfonate were carried out under the same temperature and flow conditions. The use of two different catalysts produced via the impregnation method has shown distinctive effects, influencing both bio-oil yield and chemical composition. The resulting biochar exhibits characteristics comparable to non-activated carbonaceous materials, with variations in its specific surface area and pore size depending on the catalyst.
References
T. Y. A. Fahmy, Y. Fahmy, F. Mobarak, M. El-Sakhawy, R. E. Abou-Zeid; Environ. Dev. Sustain., 2018, 22 (1), 17-32.
H. Zhang, R. Xiao, J. Nie, B. Jin, S. Shao, G. Xiao; Bioresour. Technol., 2015, 192, 68-74.
V. Goia, C.-C. Cormoş, P. Ş. Agachi; Studia UBB Chemia, 2011, 56 (2), 49-56.
J. König, L. Walleij; Inst. Trätekn. Forskn., Stockholm, 1999.
B. Östman; Wood Mater. Sci. Eng., 2021, 17 (1), 2-5.
R. Janzon, J. Puls, B. Saake; Holzforschung, 2006, 60 (4), 347-354.
R. Hoheneder, E. Fitz, R. H. Bischof, H. Russmayer, P. Ferrero, S. Peacock, M. Sauer; Bioresour. Technol., 2021, 333, 125215.
J. A. Sirvio, M. Mikola, J. Ahola, J. P. Heiskanen, S. Filonenko, A. Ammala; Carbohydr. Polym., 2023, 312, 120815.
Z. Guo, L. Olsson; Process Biochem., 2014, 49 (8), 1231-1237.
G. Lyu, S. Wu, H. Zhang; Front. Energy Res., 2015, 3.
P. Basu; in Biomass Gasification, Pyrolysis, Torrefaction, 2013; pp 147-176.
D. S. Scott, J. Piskorqt, M. A. Bergougnou, R. Graham, R. P. Overend; Ind. Eng. Chem. Res., 1988, 27, 8-15.
C. Gerdes, C. M. Simon, T. Ollesch, D. Meier, W. Kaminsky; Eng. Life Sci., 2002, 2 (6), 167-174.
Z. Zhang, D. J. Macquarrie, M. De bruyn, V. L. Budarin, A. J. Hunt, M. J. Gronnow, J. Fan, P. S. Shuttleworth, J. H. Clark, A. S. Matharu; Green Chem., 2015, 17 (1), 260-270.
Q. Lu, Z.-b. Zhang, X.-c. Yang, C.-q. Dong, X.-f. Zhu; J. Anal. Appl. Pyrolysis, 2013, 104, 139-145.
T. Stoikos; in Biomass Pyrolysis Liquids Upgrading Utilization, A. V. Bridgwater, Ed., Elsevier Appl. Sci., 1991.
Pattiya; in Direct Thermochem. Liquefaction Energy Appl., 2018; pp 3-28.
H. B. Goyal, D. Seal, R. C. Saxena; Renew Sust Energ Rev., 2008, 12 (2), 504-517.
G. W. Huber, S. Iborra, A. Corma; Chem. Rev., 2006, 106, 4044−4098.
L. Delgado-Moreno, S. Bazhari, G. Gasco, A. Mendez, M. El Azzouzi, E. Romero; Sci. Total Environ., 2021, 752, 141838.
D. Mohan, A. Sarswat, Y. S. Ok, C. U. Pittman Jr.; Bioresour. Technol., 2014, 160, 191-202.
M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, Y. S. Ok; Chemosphere, 2014, 99, 19-33.
D. J. Mihalcik, C. A. Mullen, A. A. Boateng; J. Anal. Appl. Pyrolysis, 2011, 92 (1), 224-232.
A. Heeres, N. Schenk, I. Muizebelt, R. Blees, B. De Waele, A. J. Zeeuw, N. Meyer, R. Carr, E. Wilbers, H. J. Heeres; ACS Sustainable Chem. Eng., 2018, 6 (3), 3472-3480.
A. Palčić, V. Valtchev; Appl. Catal., 2020, 606, 117-795.
A. Nechita Rotta, C. Bota, B. Brém, D. I. Porumb, E. Gál; Studia UBB Chemia, 2022, 67 (4), 169-185.
M. Sajdak, R. Muzyka; J. Anal. Appl. Pyrolysis, 2014, 107, 267-275.
F. Liu, S. Xu, L. Cao, Y. Chi, T. Zhang, D. Xue; J. Phys. Chem. C, 2007, 111, 7396-7402.
Q. Wei, P. Zhang, X. Liu, W. Huang, X. Fan, Y. Yan, R. Zhang, L. Wang, Y. Zhou; Front. Chem., 2020, 8, 586445.
J. Chen, C. Liu, S. Wu, J. Liang, M. Lei; RSC Adv., 2016, 6 (109), 107970-107976.
R. Sun, J. Tomkinson, G. L. Jones; Polym. Degrad. Stabil., 2000, 68, 111-118.
S. Roy, U. Kumar, P. Bhattacharyya; Environ Sci Pollut Res Int, 2019, 26 (7), 7272-7276.
Z. Chen, T. Liu, J. Tang, Z. Zheng, H. Wang, Q. Shao, G. Chen, Z. Li, Y. Chen, J. Zhu, T. Feng; Environ Sci Pollut Res Int, 2018, 25 (12), 11854-11866.
M. d. C. Rangel, F. M. Mayer, M. d. S. Carvalho, G. Saboia, A. M. de Andrade; Biomass, 2023, 3 (1), 31-63.
X. Lu, X. Gu; Biotechnol Biofuels Bioprod, 2022, 15 (1), 106.
P. Straka, O. Bičáková, T. Hlinčík; Catalysts, 2021, 11 (12).
J. Yu, B. Luo, Y. Wang, S. Wang, K. Wu, C. Liu, S. Chu, H. Zhang; Bioresour. Technol., 2022, 346, 126640.
H. Yang, W. Yin, X. Zhu, P. J. Deuss, H. J. Heeres; ChemCatChem, 2022, 14, 20220097.
Y. Zheng, J. Wang, D. Li, C. Liu, Y. Lu, X. Lin, Z. Zheng; J. Energy Inst., 2021, 97, 58-72.
Y. L. Ding, H. Q. Wang, M. Xiang, P. Yu, R. Q. Li, Q. P. Ke; Front Chem, 2020, 8, 790.
M. Koehle, A. Mhadeshwar; New Future Dev. Catal., 2013; 63-93.
J. Stetefeld, S. A. McKenna, T. R. Patel; Biophys Rev, 2016, 8 (4), 409-427.
M. Kaszuba, D. McKnight, M. T. Connah, F. K. McNeil-Watson, U. Nobbmann; J. Nanoparticle Res., 2007, 10 (5), 823-829.
J. Lim, S. P. Yeap, H. X. Che, S. C. Low; Nanoscale Res. Lett., 2013, 8, 381.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.