EFFECT OF SOME ANTIOXIDANT FOOD ADDITIVES ON THE DEGRADATION OF CORNELIAN CHERRY ANTHOCYANINS

Authors

  • Bianca MOLDOVAN Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania https://orcid.org/0000-0002-5507-6761
  • Luminița DAVID Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. *Corresponding author: muntean@chem.ubbcluj.ro https://orcid.org/0000-0003-3604-6513

DOI:

https://doi.org/10.24193/subbchem.2020.1.07

Keywords:

Cornus mas L., antioxidant food additives, anthocyanins, degradation kinetics

Abstract

Anthocyanin rich fruits present a great potential as source of natural food colorants. Their use in the food industry is limited by their low stability. The influence of storage media and addition of three widely used antioxidant food additives, such as citric acid, ascorbic acid and butylated hydroxyanisole, on the stability of Cornelian cherry anthocyanins, was investigated at room temperature. In aqueous solutions, the degradation of these valuable pigments occurred slower compared to alcoholic solution. Addition of ascorbic acid significantly enhanced anthocyanins degradation in ethanolic or aqueous solutions, while citric acid and BHA had a positive effect on the anthocyanins’ stability in ethanol. The Cornelian cherry anthocyanins’ degradation followed first-order reaction kinetics. The obtained kinetic parameters (reaction rate constants k and half-lifes t1/2) clearly indicated that Cornelian cherry anthocyanins stored in ethanol in presence of citric acid present the highest stability, the degradation rate constant being 0.74×10-3 h-1.

References

E. Pojer; F. Mattivi; D. Johnson; C.S. Stockley; Compr. Rev. Food Sci. Food Saf., 2013, 12, 483-508.

S. Zafra-Stone; T. Yasmin; M. Bagchi; A. Chatterjee; J.A. Vinson; D. Bagchi; Mol. Nutr. Food Res., 2007, 51, 675-683.

A. Ben Lagha; S. Dudonne; Y. Desjardins; D. Grenier; J. Agric. Food Chem., 2015, 63, 6999-7008.

C. Xu; Y. Wang; H. Yu; H. Tian; X. Chen; ACS Nano, 2018, 12, 8255-8265.

O. Danila; A. Berghian Sevastre; V. Dionisie; D. Gheban; D. Olteanu; F. Tabaran; I. Baldea; G. Katona; B. Moldovan; S. Clichici; L. David; G. A. Filip; Nanomedicine (Lond.), 2017, 12, 1455-1473

A. Castaneda-Ovando; M.L. de Pacheco-Hernandez; M.E. Paez-Hernandez; J.A. Rodriguez; C.A. Galan-Vidal; Food Chem., 2009, 113, 859-871.

O. Rop; J.Mlcek; D.Kramarova; T.Jurikova; Afr. J. Biotechnol., 2010, 9, 1205-1210.

M. De Biaggi; D. Donno; M.G. Mellano; I. Riondato; E.N. Rakotoniaina; G.L. Beccaro; Plant Foods Hum. Nutr., 2018, 73, 89-94.

B. Moldovan; A. Popa; L. David; J. Appl. Bot. Food Qual., 2016, 89, 208-211

L. David; V. Danciu; B. Moldovan; A. Filip; Antioxidants, 2019, 8, 114.

G. A. Filip; B. Moldovan; I. Baldea; D. Olteanu; R. Suharoschi; N. Decea; C. M. Cismaru; E. Gal; M. Cenariu; S. Clichici; L. David; J. Photochem. Photobiol. B, 2019, 191, 26-37.

I. Baldea; A. Florea; D. Olteanu; S. Clichici; L. David; B. Moldovan; M. Cenariu; M. Achim; R. Suharoschi; S. Danescu; G. A. Filip; Nanomedicine, 2020, 15, 55-75.

S. Asgary; R. Kelishadi; M. Rafieian-Kopaei; S. Najafi; M. Najafi; A. Sahebkar; Pediatr. Cardiol., 2013, 34, 1729-1735.

B. Dinda; A.M. Kyriakopoulos; S. Dinda; V. Zoumpourlis; N.S. Thomaidis; A. Velegraki; C. Markopoulos; M. Dinda; J. Ethnopharmacol., 2016, 193, 670-690.

A. Milenkovic Andelkovic; B. Radovanovic; M. Andelkovic; A. Radovanovic; V. Nikolic; V. Randelovic; Adv. Technol., 2015, 4, 26-31.

B. Moldovan; A. Filip; S. Clichici; R. Suharovschi; P. Bolfa; L. David; J. Funct. Foods, 2016, 26, 77-87.

M. Pawlowska; F. Camangi; A. Braca; Food Chem., 2010, 119, 1257-1261.

T. Sozanski; A.Z. Kucharska; A. Rapak; D. Szumny; M. Trocha; A. Merwid-Lad; S. Dzimira; T. Piasecki; N. Piorecki; Jan Magdalan; A. Szelag; Atherosclerosis, 2016, 254, 151-160.

E. Choe; D. B. Min; Compr. Rev. Food Sci. Food Saf., 2009, 8, 345-358.

R. Jackman; R.Y. Yada; M.A. Tung; R.A. Speers; J. Food Biochem., 1987, 11, 201-247.

R. Levy; Z. Okun; A. Shpigelman; Foods, 2019, 8, 207

M. M. Giusti; R. E. Wrolstad; Current Protocols in Food Analytical Chemistry, Wiley, New York, 2001, pp. 1–13.

N. Marti; A. Perez-Vicente; C. Garcia-Viguera; J. Sci. Food Agric., 2002, 82, 217-221.

M. Evest; L. J. Mauer; J. Agric. Food Chem., 2013, 61, 4169-4179.

R. Levy; Z. Okun; A. Shpiegelman; Foods, 2019, 8, 207.

J. Li; H. Song; N. Dong; G. Zhao; Food Sci. Biotechnol., 2014, 23, 89-96.

C. Garcia-Viguera; P. Bridle; Food Chem., 1999, 64, 21-26.

E. M. Hubbermann; A. Heins; H. Stockmann; K. Schwarz; Eur. Food Res. Technol., 2006, 223, 83-90.

A. Cata; I. M. C. Ienascu; C. Tanasie; M. N. Stefanut; Rev. Roum. Chim., 2019, 64, 893-899.

A. Wojdylo; P. Nowicka; M. Teleszko, Processes, 2019, 7, 367.

A. Bozdogan; K. Yasar; Turkish J. Agric. Food Sci. Technol., 2019, 7, 282-285.

M. M. Pragalyaashree; D. Tiroutchelvame; S. Sashikumar; J. Appl. Pharm. Sci., 2018, 8, 057-063.

C. C. Chen; C. Lin; M. H. Chen; P. Y. Chyang; Foods, 2019, 8, 393.

K. C. Tseng; H. M. Chang; J. S. B. Wu; J. Food Process Preserv., 2006, 30, 503-514.

Downloads

Published

2020-03-20

How to Cite

MOLDOVAN, B., & DAVID, L. (2020). EFFECT OF SOME ANTIOXIDANT FOOD ADDITIVES ON THE DEGRADATION OF CORNELIAN CHERRY ANTHOCYANINS. Studia Universitatis Babeș-Bolyai Chemia, 65(1), 83–92. https://doi.org/10.24193/subbchem.2020.1.07

Issue

Section

Articles

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.