BEHAVIOR OF NEWTONIAN AND NON-NEWTONIAN FLUIDS IN PUMPING AND TRANSPORT PROCESSES

Authors

  • Andra-Camelia PAVEL Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania. https://orcid.org/0000-0001-5611-948X
  • Elena-Mihaela NAGY National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry, B-dul Ion Ionescu de la Brad nr.6, Bucharest, Romania https://orcid.org/0000-0002-8909-9160
  • Teodor Gabriel FODOREAN National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry, B-dul Ion Ionescu de la Brad nr.6, Bucharest, Romania
  • Adina MICLĂUȘ Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania. *Corresponding author: adina.miclaus@ubbcluj.ro https://orcid.org/0000-0002-7341-4365

DOI:

https://doi.org/10.24193/subbchem.2025.2.14

Keywords:

Newtonian, non-Newtonian fluids, apparent viscosity, material consistency, flow behavior index, volumetric flow rate, pressure difference, pumping and transport

Abstract

The present study investigates the behavior of Newtonian and non-Newtonian fluids in pumping and transport processes, using a laboratory facility. The rheological behavior of the selected fluids were determined by a rotational viscometer with concentric cylinders. The effect of pressure difference on pumping of selected fluids in the laboratory circuit showed a linear decrease of effective/delivered volumetric flow rate for the Newtonian fluid, glycerin/water 80%, and a non-linear decrease for non-Newtonian fluid, Separan AP 30E, 2g/l.

References

1. G. Towler; R. Sinnott; Piping and instrumentation. In Principles, Practice and Economics of Plant and Process Design, 3rd ed.; Butterworth-Heinemann Elsevier, Oxford, UK, 2022, pp. 235-297.

2. J. F. Steffe; Tube viscometry. In Rheological Methods in Food Process Engineering, 2nd ed.; Freeman Press, East Lansing, Michigan, USA, 1992, pp. 94-157.

3. M. Sabah Kassim; S. A. Sarow; IOP Conf. Series, Mater. Sci. Eng., 2020, 870(1), (012032), pp.12-32.

4. P. Angeli; G. F. Hewitt; Int. J. Multiphase Flow, 2000, 26, 1117–1140.

5. S. K. Kim; J. Rheol.; 2018, 62, 1397-1407.

6. T. Shende; V. J. Niasar; M. Babaci; Rheol. Acta., 2021, 60, 11-21.

7. F. Rituraj; A. Vacca; Mech. Systems and Signal Processing, 2018, 106, 284-302.

8. T. Hayase; Fluid Dyn. Res.; 2015, 47(5), (051201), pp. 1-20.

9. T. G. Mezger; Flow curves and viscosity functions. In The Rheology Handbook: For users of rotational and oscillatory rheometers, 2nd revised ed.; Vincentz Network GmbH, Hannover, Germany, 2006, pp. 30-58.

10. A. Miclăuş; V. Pode; Curgerea laminară a fluidelor in conducte (tuburi) cu secţiune circulară. In Cazuri particulare de curgere a fluidelor ideale si reale. Elemente de reologie, Casa Cărţii de Ştiinţă, Cluj-Napoca, Romania, 2018, pp.81-92.

Downloads

Published

2025-06-20

How to Cite

PAVEL, A.-C., NAGY, E.-M., FODOREAN, T. G., & MICLĂUȘ, A. (2025). BEHAVIOR OF NEWTONIAN AND NON-NEWTONIAN FLUIDS IN PUMPING AND TRANSPORT PROCESSES. Studia Universitatis Babeș-Bolyai Chemia, 70(2), 211–221. https://doi.org/10.24193/subbchem.2025.2.14

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.