CURCUMIN AND WHEY PROTEIN BINDING AND STRUCTURAL CHARACTERISTICS OF THEIR COMPLEX EVIDENCED BY ATOMIC FORCE MICROSCOPY

Authors

  • Levente Zsolt RACZ Babeş-Bolyai University, Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania.
  • Csaba-Pal RACZ Babeş-Bolyai University, Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0001-7981-7678
  • Aurora MOCANU Babeş-Bolyai University, Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania.
  • Erika LEVEI INCDO-INOE2000, Research Institute for Analytical Instrumentation, 67 Donath str., RO-400293 Cluj-Napoca, Romania. https://orcid.org/0000-0002-0145-0287
  • George ARGHIR Technical University, Faculty of Materials and Environment Engineering, 103-105 Muncii Boulevard, RO-400641, Cluj-Napoca, Romania. https://orcid.org/0000-0003-4341-9402
  • Lucian Cristian POP Babeş-Bolyai University, Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0002-1778-9226
  • Gheorghe TOMOAIA Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 47 Gen. Traian Mosoiu str., RO-400132, Cluj-Napoca, Romania; Academy of Romanian Scientists, 3 Ilfov str., RO-050044, Bucharest, Romania.
  • Ioan PETEAN Babeş-Bolyai University, Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0003-3274-8817
  • Gertrud-Alexandra PALTINEAN Babeş-Bolyai University, Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0002-4000-1978
  • Maria TOMOAIA-COTISEL Babeş-Bolyai University, Research Center of Physical Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania; Academy of Romanian Scientists, 3 Ilfov str., RO-050044, Bucharest, Romania. *Corresponding author: mcotisel@gmail.com https://orcid.org/0000-0002-0995-3006

DOI:

https://doi.org/10.24193/subbchem.2022.3.05

Keywords:

Curcumin, whey protein concentrate, curcumin-whey protein complex, AFM, nanostructure, roughness.

Abstract

Curcumin (CCM) has beneficial effects on human health due to its pharmacological activities, which have a protective role against many diseases. Whey protein concentrate (WPC) is a product from the milk industry that is often used to improve and stabilize different foods. It helps curcumin improve its water solubility, poor bioavailability, low stability, and efficacy. Atomic force microscopy (AFM) was employed to highlight the surface topography of adsorbed films of pure curcumin, pure whey protein concentrate, and their CCM-WPC complex. The obtained results show that individual nanoparticles, NPs, were mobilized into the aqueous dispersion and successfully adsorbed onto the glass slides as thin films. Their NPs shape is rounded, and their diameter differs on each sample, namely about 30 nm for CCM, around 55 nm for WPC, and about 40 nm for the CCM-WPC complex. It proves that both CCM and WPC molecules generate a complex that embeds them in a compact structure. The surface roughness was also monitored, and pure CCM produces the smoothest and uniform film, meanwhile, the presence of WPC makes several pores in the film surface which increases the roughness value. The obtained results provide useful evidence for the application of whey protein as an effective carrier of curcumin, a bioactive polyphenol compound. In addition, this work supports the application of the CCM-WPC complex as health supplements. 

References

B. Zheng; D.J. McClements; Molecules, 2020, 25, 2791.

V. Furlan; J. Konc; U. Bren; Molecules, 2018, 23, 3351.

S.S. Hettiarachchi; S.P. Dunuweera; A.N. Dunuweera; R.M.G. Rajapakse; ACS Omega, 2021, 6, 8246−8252.

M.U. Akbar; K. Rehman; K.M. Zia; M.I. Qadir; M.S.H. Akash; M. Ibrahim; Crit. Rev. Eukaryot. Gene Expr., 2018, 28(1), 17–24.

M.L. Del Prado-Audelo; I.H. Caballero-Floran; J.A. Meza-Toledo; N. Mendoza-Munoz; M. Gonzalez-Torres; B. Floran; H. Cortes; G. Leyva-Gomez; Biomolecules, 2019, 9, 56.

L. Racz; M. Tomoaia-Cotisel; Cs.P. Racz; P. Bulieris; I. Grosu; S. Porav; A. Ciorita; X. Filip; F. Martin; G. Serban; I. Kacso; Studia UBB Chemia, 2021, 66(3), 209-224.

G.A. Paltinean; S. Riga; Gh. Tomoaia; A. Mocanu; M. Tomoaia-Cotisel; Academy of Romanian Scientists Annals Series on Biological Sciences, 2021, 10(2), 103-141.

K.I. Priyadarsini; Molecules, 2014, 19(12), 20091-20112.

B.H. Ali; H. Marrif; S.A. Noureldayem; A.O. Bakheit; G. Blunden; Nat. Prod. Commun., 2006, 1(6), 509-521.

S. Solghi; Z. Emam-Djomeh; M. Fathi; F. Farahani; J. Food Process Eng., 2020, 43(6), e13403.

V.S Ipar; A. Dsouza; P.V. Devarajan; Eur. J. Drug Metab. Pharmacokinet., 2019, 44(4), 459-480.

M. Kharat; D.J. McClements; J. Colloid Interface Sci., 2019, 557, 506–518.

A.D. Moghaddam; M. Mohammadian; A. Sharifan; S. Hadi; J. Food Bioprocess Eng., 2019, 2(1), 55-60.

A.H. Sneharani; J.V. Karakkat; S.A. Singh; A.G.A. Rao; J. Agric. Food Chem., 2010, 58(20), 11130–11139.

M. Li; Y. Ma; M. O. Ngadi; Food Chem., 2013, 141(2), 1504-1511.

P. Arya; N. Raghav; J. Mol. Struct., 2021, 1228, 129774.

H. Mashaqbeh; R. Obaidat; N. Al-Shar’I; Polymers, 2021, 13(23), 4073.

Cs.P. Racz; R.D. Pasca; S. Santa; I. Kacso; Gh. Tomoaia; A. Mocanu;

O. Horovitz; M. Tomoaia-Cotisel; Rev. Chim. (Bucharest), 2011, 62(10), 992-997.

Cs.P. Racz; G. Borodi; M.M. Pop; I. Kacso; S. Santa; M. Tomoaia-Cotisel; Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater., 2012, 68(2), 164-170.

Cs.P. Racz; S. Santa; M. Tomoaia-Cotisel; G. Borodi; I. Kacso; A. Pirnau; I. Bratu; J. Incl. Phenom. Macrocycl. Chem., 2013, 76(1), 193-199.

J. Burgain; R. El Zein; J. Scher; J. Petit; E.A. Norwood; G. Francius; C. Gaiani; J. Food Eng., 2016, 178, 39-46.

P.S. de P. Herrmann; C.M.P. Yoshida; A.J. Antunes; J.A. Marcondes; Packag. Technol. Sci., 2004, 17, 267–273.

P.X. Qi; C.I. Onwulata; J. Dairy Sci., 2011, 94(5), 2231–2244.

G.T. D. Sousa; F.S. Lira; J.C. Rosa; E.P. de Oliveira; L.M. Oyama; R.V. Santos; G.D. Pimentel; Lipids Health Dis., 2012, 11, 67.

U.S. Dairy Export Council; Reference Manual for U.S. Whey and Lactose Products, edited by V. Lagrange; U.S. Dairy Export Council, Arlington, USA, 2003, pp. 1-226.

G.K. Gbassi; F.S. Yolou; S.O. Sarr; P.G. Atheba; C.N. Amin; M. Ake; Int. J. Biol. Chem. Sci., 2012, 6(4), 1828-1837.

S. Patel; J. Funct. Foods, 2015, 19, 308–319.

S. Minj; S. Anand; Dairy, 2020, 1, 233–258.

A.R. da Conceicao; K.A. Dias; S.M.S. Pereira; L.C. Saraiva; L.A. Oliveira; E.C. Gomes de Souza; R.V. Goncalves; S.L.P. da Matta; A.J. Natali; H.S.D. Martino; C.M. Della Lucia; Br. J. Nutr., 2022, 127, 526–539.

A. Nayak; C. Genot; A. Meynier; A. Dorlando; I. Capron; LWT, 2022, 153, 112421.

Y. Wen; Z. Xu, Y. Liu; H. Corke; Z. Sui; Compr. Rev. Food Sci. Food. Saf., 2020, 1–24.

R.D. Pasca; Gh. Tomoaia; A. Mocanu; I. Petean; A.G. Paltinean; O. Soritau; M. Tomoaia-Cotisel; Studia UBB Chemia, 2015, 60(3), 257-264.

Gh. Tomoaia; O. Soritau; M. Tomoaia-Cotisel; L.B. Pop; A. Pop; A. Mocanu; O. Horovitz; L.D. Bobos; Powder Technol., 2013, 238, 99-107.

Gh. Tomoaia; M. Tomoaia-Cotisel; L.B. Pop; A. Pop; O. Horovitz; A. Mocanu; N. Jumate; L.D. Bobos; Rev. Roum. Chim., 2011, 56(10-11), 1039-1046.

A. Mocanu; I. Cernica; Gh. Tomoaia; L.D. Bobos; O. Horovitz; M. Tomoaia-Cotisel; Colloid Surf. A, 2009, 338(1-3), 93-101.

Gh. Tomoaia; O. Horovitz; A. Mocanu; A. Nita; A. Avram; Cs.P. Racz; O. Soritau; M. Cenariu; M. Tomoaia-Cotisel; Colloids Surf. B, 2015, 135, 726-734.

A. Mocanu; O. Cadar; P.T. Frangopol; I. Petean; Gh. Tomoaia; G.A. Paltinean; Cs.P. Racz; O. Horovitz; M. Tomoaia-Cotisel; R. Soc. Open Sci., 2021, 8(1), 201785.

C. Garbo; J. Locs; M. D’Este; G. Demazeau; A. Mocanu; C. Roman; O. Horovitz; M. Tomoaia-Cotisel; Int. J. Nanomed., 2020, 15, 1037-1058.

D. Oltean-Dan; G.B. Dogaru; M. Tomoaia-Cotisel; D. Apostu; A. Mester; H.R. C. Benea; M.G. Paiusan; E.M. Jianu; A. Mocanu; R. Balint; C.O. Popa; C. Berce; G.I. Bodizs; A.M. Toader; Gh. Tomoaia; Int. J. Nanomed., 2019, 14, 5799-5816.

D. Oltean-Dan; G.B. Dogaru; E.M. Jianu; S. Riga; M. Tomoaia-Cotisel; A. Mocanu; L. Barbu-Tudoran; Gh. Tomoaia; Micromachines, 2021, 12(11), 1352.

A. Mocanu; G. Furtos; S. Rapuntean; O. Horovitz; F. Chirila; C. Garbo; A. Danisteanu; G. Rapuntean; C. Prejmerean; M. Tomoaia-Cotisel; Appl. Surf. Sci., 2014, 298, 225-235.

C. Garbo; M. Sindilaru; A. Carlea; Gh. Tomoaia; V. Almasan; I. Petean; A. Mocanu; O. Horovitz; M. Tomoaia-Cotisel; Part. Sci. Technol., 2017, 35(1), 29-37.

G. Furtos; M. Tomoaia-Cotisel; C. Garbo; M. Senila; N. Jumate; I. Vida-Simiti; C. Prejmerean; Part. Sci. Technol., 2013, 31(4), 392-398.

G.A. Hosu-Prack; I. Petean; G. Arghir; L.D. Bobos; I. Iurcut; M. Tomoaia-Cotisel; Carpathian J. Earth Environ. Sci., 2013, 8(4), 75-82.

G.A. Paltinean; I. Petean; G. Arghir; D.F. Muntean; L.D. Bobos; M. Tomoaia-Cotisel; Partic. Sci. Technol., 2016, 34(5), 580-585.

M. Tomoaia-Cotisel; A. Tomoaia-Cotisel; T. Yupsanis; Gh. Tomoaia; I. Balea; A. Mocanu; Cs.P. Racz; Rev. Roum. Chim., 2006, 51(12),1181-1185.

O. Horovitz; Gh. Tomoaia; A. Mocanu; T. Yupsanis; M. Tomoaia-Cotisel; Gold Bull., 2007, 40(3), 213-218.

O. Horovitz; A. Mocanu; Gh. Tomoaia; L.D. Bobos; D. Dubert; I. Daian; T. Yupsanis; M. Tomoaia-Cotisel; Studia UBB Chemia, 2007, 52(1), 97-108.

O. Horovitz; A. Mocanu; Gh. Tomoaia; M. Crisan; L.D. Bobos; Cs.P. Racz; M. Tomoaia-Cotisel; Studia UBB Chemia, 2007, 52(3), 53-71.

M. Tomoaia-Cotisel; A. Mocanu; Rev. Chim. (Bucharest), 2008, 59(11), 1230-1233.

P.T. Frangopol; D.A. Cadenhead; M. Tomoaia-Cotisel; A. Mocanu; Studia UBB Chemia, 2009, 54(1), 23-35.

I. Balea; M. Tomoaia-Cotisel; O. Horovitz; Gh. Tomoaia; A. Mocanu; Studia UBB Chemia, 2009, 54(1), 151-163.

Gh. Tomoaia; C. Borzan; M. Crisan; A. Mocanu; O. Horovitz; L.D. Bobos; M. Tomoaia-Cotisel; Rev. Roum. Chim., 2009, 54(5), 363-372.

O. Monfort; L.C. Pop; S. Sfaelou; T. Plecenik; T. Roch; V. Dracopoulos; E. Stathatos; G. Plesch; P. Lianos; Chem. Eng. J., 2016, 286, 91-97.

M. Tomoaia-Cotisel; D.V. Pop-Toader; U.V. Zdrenghea; Gh. Tomoaia; O. Horovitz; A. Mocanu; Studia UBB Chemia., 2009, 54(4), 285-296.

U.V. Zdrenghea; Gh. Tomoaia; D.V. Pop-Toader; A. Mocanu; O. Horovitz; M. Tomoaia-Cotisel; Comb. Chem. High Throughput Screen., 2011, 14(4), 237-247.

P.T. Frangopol; D.A. Cadenhead; Gh. Tomoaia; A. Mocanu; M. Tomoaia-Cotisel; Rev. Roum. Chim., 2015, 60(2-3), 265-273.

A. Mocanu; P.J. Quinn; C. Nicula; S. Riga; Gh. Tomoaia; C.A. Bardas; M. Tomoaia-Cotisel; Rev. Roum. Chim., 2021, 66(10-11), 855-869.

Gh. Tomoaia; M. Tomoaia-Cotisel; A. Mocanu; O. Horovitz; L.D. Bobos; M. Crisan; I. Petean; J. Optoelectron. Adv. Mater., 2008, 10(4), 961-964.

A.G. Hosu-Prack; I. Petean; G. Arghir; L.D. Bobos; M. Tomoaia Cotisel; Carpathian J. Earth Environ. Sci., 2016, 11(2), 539-546.

M. Mohammadian; M. Salami; F. Alavi; S. Momen; Z. Emam-Djomeh; A.A. Moosavi-Movahedi; Food Biophys., 2019, 14, 425–436.

M. Mohammadian; A.D. Moghaddam; A. Sharifan; P. Dabaghi; S. Hadi; J. Iran Chem. Soc., 2020, 17, 2481–2492.

Downloads

Published

2022-09-30

How to Cite

RACZ, L. Z., RACZ, C.-P., MOCANU, A., LEVEI, E., ARGHIR, G., POP, L. C., … TOMOAIA-COTISEL, M. (2022). CURCUMIN AND WHEY PROTEIN BINDING AND STRUCTURAL CHARACTERISTICS OF THEIR COMPLEX EVIDENCED BY ATOMIC FORCE MICROSCOPY. Studia Universitatis Babeș-Bolyai Chemia, 67(3), 61–74. https://doi.org/10.24193/subbchem.2022.3.05

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.