Microencapsulation of Salvia Officinalis L. Essential Oil by Complex Coacervation Technology

Authors

  • István SZÉKELY-SZENTMIKLÓSI Department of Pharmaceutical Industry and Management, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology, Târgu Mures, Romania. https://orcid.org/0000-0002-8118-7107
  • Emőke Margit RÉDAI Department of Specialty Pharmaceutical Sciences and Pharmaceutical Technology, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology, Târgu Mures, Romania.
  • Robert-Alexandru VLAD Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology, Târgu Mures, Romania.
  • Zoltán SZABÓ Department of Pharmaceutical Industry and Management, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology, Târgu Mures, Romania. https://orcid.org/0000-0001-6775-8420
  • Béla KOVÁCS Department of Fundamental Pharmaceutical Sciences, Pharmaceutical Biochemistry and the Chemistry of Environmental Factors, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology, Târgu Mures, Romania. https://orcid.org/0000-0002-6439-4753
  • Attila-Levente GERGELY Department of Mechanical Engineering, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Miercurea Ciuc, Romania. https://orcid.org/0000-0003-4536-7642
  • Csilla ALBERT Department of Food Science, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Miercurea Ciuc, Romania. https://orcid.org/0000-0001-6882-6691
  • Blanka SZÉKELY-SZENTMIKLÓSI Department of Specialty Pharmaceutical Sciences and Pharmaceutical Technology, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology, Târgu Mures, Romania. * Corresponding author: blanka.szekely-szentmiklosi@umfst.ro
  • Emese SIPOS Department of Pharmaceutical Industry and Management, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology, Târgu Mures, Romania.

DOI:

https://doi.org/10.24193/subbchem.2024.3.14

Keywords:

microencapsulation, complex coacervation, essential oil, Salvia officinalis L.

Abstract

The essential oil of Salvia officinalis L. (sage) exhibits versatile biological properties. The high sensitivity of sage essential oil (SEO) to environmental conditions and limited processability represent important hurdles in its use, which, however, can be overcome by microencapsulation. The objective of the current study was to encapsulate sage essential oil into core-shell type microcapsules by complex coacervation technology and to transform it into solid form by freeze-drying. Arabic gum (GA) and three different type A gelatin (G) grades were used to investigate the effect of the gel strength on microcapsule characteristics. The formation of essential oil containing microcapsules during complex coacervation was assessed by optical microscopy while SEM imaging was used to determine the morphology of the freeze-dried forms. Characterization of microcapsules was completed with FT-IR spectroscopy. Encapsulation efficiency was determined by UV-VIS spectrophotometry and the composition of essential oil by GC-MS technique. Results revealed that by the application of selected microencapsulation technology and freeze-drying method high encapsulation efficiency values could be achieved, the gel strength of gelatin has a decisive role in microcapsule particle size and the composition of essential oil is well preserved following the technological process.

References

Committee on Herbal Medicinal Products (HMPC); EMA Salvia Monograph, 2016, 44.

Committee on Herbal Medicinal Products (HMPC); Eur. Med. Agency - Comm. Herb. Med. Prod., 2016, 44.

M. Jakovljević; S. Jokić; M. Molnar; M. Jašić; J. Babić; H. Jukić; I. Banjari; Plants, 2019, 8, 55.

A. L. Lopresti; Drugs R D, 2017, 17, 53–64.

G. P. Eckert; Front. Pharmacol., 2010, 1, 138.

M. Miroddi; M. Navarra; M. C. Quattropani; F. Calapai; S. Gangemi; G. Calapai; CNS Neurosci. Ther., 2014, 20, 485–495.

D. O. Kennedy; S. Pace; C. Haskell; E. J. Okello; A. Milne; A. B. Scholey; Neuropsychopharmacology, 2006, 31, 845–852.

T. Hase; S. Shishido; S. Yamamoto; R. Yamashita; H. Nukima; S. Taira; T. Toyoda; K. Abe; T. Hamaguchi; K. Ono et al.; Sci. Rep., 2019, 9, 1–13.

S. Datta; S. Patil; J. Alzheimer’s Dis., 2020, 12, 131–143.

S. K. El Euch; D. B. Hassine; S. Cazaux; N. Bouzouita; J. Bouajila; South African J. Bot., 2019, 120, 253–260.

R. Tundis; M. Leporini; M. Bonesi; S. Rovito; N. G. Passalacqua; Molecules, 2020, 25, 5826.

R. Bleiziffer; C. Mesaros; S. Suvar; P. Podea; A. Iordache; F.-D. Yudin; M. Culea; Stud. Univ. Babeș-Bolyai Chem., 2017, 62, 373–385.

A. Russo; C. Formisano; D. Rigano; F. Senatore; S. Delfine; V. Cardile; S. Rosselli; M. Bruno; Food Chem. Toxicol., 2013, 55, 42–47.

S. Sertel; T. Eichhorn; P. K. Plinkert; T. Efferth; HNO, 2011, 59, 1203–1208.

M. Yanagimichi; K. Nishino; A. Sakamoto; R. Kurodai; K. Kojima; N. Eto; H. Isoda; R. Ksouri; K. Irie; T. Kambe et al.; Biochem. Biophys. Reports, 2021, 25, 100882.

H. A. Mohammed; H. M. Eldeeb; R. A. Khan; M. S. Al-Omar; S. A. A. Mohammed; M. S. M. Sajid; M. S. A. Aly; A. M. Ahmad; A. A. H. Abdellatif; S. Y. Eid et al.; Molecules, 2021, 26, 5757.

C. Turek; F. C. Stintzing; Compr. Rev. Food Sci. Food Saf., 2013, 12, 40–53.

International Organization for Standardization; Oil of Dalmatian Sage (Salvia Officinalis L.); Geneva, Switzerland, 1997; Vol. ISO 9909:1.

G. Tibaldi; S. Hazrati; S. J. Hosseini; A. Ertani; R. Bulgari; S. Nicola; Ind. Crops Prod., 2022, 183, 114923.

V. I. Sousa; J. F. Parente; J. F. Marques; M. A. Forte; C. J. Tavares; Polymers (Basel), 2022, 14, 1730.

M. Arenas-Jal; J. M. Suñé-Negre; E. García-Montoya; Eur. Food Res. Technol., 2020, 246, 1371–1382.

C. Thies; In Encapsulation and Controlled Release Technologies in Food Systems; J. M. Lakkis, Ed.; John Wiley & Sons Inc., 2016; pp. 41–77.

F. W. Tiebackx; Zeitschrift für Chemie und Ind. der Kolloide, 1911, 8, 198–201.

G. O. Fanger; In Microencapsulation; Springer US: Boston, MA, 1974; pp. 1–20.

Y. P. Timilsena; T. O. Akanbi; N. Khalid; B. Adhikari; C. J. Barrow; Int. J. Biol. Macromol., 2019, 121, 1276–1286.

Z. Xiao; W. Liu; G. Zhu; R. Zhou; Y. Niu; J. Sci. Food Agric., 2014, 94, 1482–1494.

F. Milano; A. Masi; M. Madaghiele; A. Sannino; L. Salvatore; N. Gallo; Pharmaceutics, 2023, 15, 1499.

C. E. Sing; S. L. Perry; Soft Matter, 2020, 16, 2885–2914.

L. Zhou; H. Shi; Z. Li; C. He; Macromol. Rapid Commun., 2020, 41, 1–20.

H. J. W. Peters; E. M. G. van Bommel; J. G. F.; Drug Dev. Ind. Pharm., 1992, 18, 123–134.

B. Liu; L. Lai; B. Muhoza; S. Xia; Food Biosci., 2021, 44, 101403.

R. Shaddel; J. Hesari; S. Azadmard-Damirchi; H. Hamishehkar; B. Fathi-Achachlouei; Q. Huang; Int. J. Biol. Macromol., 2018, 107, 1800–1810.

I. D. Alvim; C. R. F. Grosso; Ciência e Tecnol. Aliment., 2010, 30, 1069–1076.

S. Leclercq; K. R. Harlander; G. A. Reineccius; Flavour Fragr. J., 2009, 24, 17–24.

A. S. Prata; M. H. A. Zanin; M. I. Ré; C. R. F. Grosso; Colloids Surfaces B Biointerfaces, 2008, 67, 171–178.

A. S. Prata; C. R. F. Grosso; J. Am. Oil Chem. Soc., 2015, 92, 1063–1072.

Y. P. Lemos; P. H. Mariano Marfil; V. R. Nicoletti; Int. J. Food Prop., 2017, 20, 1–10.

B. Muhoza; S. Xia; J. Cai; X. Zhang; E. Duhoranimana; J. Su; Food Hydrocoll., 2019, 87, 712–722.

B. Muhoza; S. Xia; X. Zhang; Food Hydrocoll., 2019, 97, 105174.

Z. Rousi; C. Malhiac; D. G. Fatouros; A. Paraskevopoulou; Food Hydrocoll., 2019, 96, 577–588.

W. Yang; Y. Gong; Y. Wang; C. Wu; X. Zhang; J. Li; D. Wu; RSC Adv., 2024, 14, 4880–4889.

T. A. Comunian; J. Gomez-Estaca; R. Ferro-Furtado; G. J. A. Conceição; I. C. F. Moraes; I. A. De Castro; C. S. Favaro-Trindade; Carbohydr. Polym., 2016, 150, 319–329.

P. H. M. Marfil; B. B. Paulo; I. D. Alvim; V. R. Nicoletti; J. Food Process Eng., 2018, 41, 1–11.

G. A. Rocha-Selmi; F. T. Bozza; M. Thomazini; H. M. A. Bolini; C. S. Fávaro-Trindade; Food Chem., 2013, 139, 72–78.

M. G. Santos; F. T. Bozza; M. Thomazini; C. S. Favaro-Trindade; Food Chem., 2015, 171, 32–39.

T. A. Comunian; M. Thomazini; A. J. G. Alves; F. E. De Matos Junior; J. C. De Carvalho Balieiro; C. S. Favaro-Trindade; Food Res. Int., 2013, 52, 373–379.

T. Baj; A. Ludwiczuk; E. Sieniawska; K. Skalicka-Woźniak; J. Widelski; K. Zieba; K. Głowniak; Acta Pol. Pharm., 2013, 70, 35–40.

N. D. Gonçalves; C. R. F. Grosso; R. S. Rabelo; M. D. Hubinger; A. S. Prata; Carbohydr. Polym., 2018, 196, 427–432.

R. Zhang; L. Huang; X. Xiong; M. C. Qian; H. Ji; Flavour Fragr. J., 2020, 35, 157–166.

F. Baghi; S. Ghnimi; E. Dumas; A. Gharsallaoui; Appl. Sci., 2023, 13, 6184.

X.-Y. Qv; Z.-P. Zeng; J.-G. Jiang; Food Hydrocoll., 2011, 25, 1596–1603.

G. A. Rocha-Selmi; C. S. Favaro-Trindade; C. R. F. Grosso; J. Chem., 2013, 2013, 982603.

S. Ferreira; V. R. Nicoletti; J. Food Eng., 2021, 291, 110214.

A. Rungwasantisuk; S. Raibhu; Prog. Org. Coatings, 2020, 149, 105924.

A. M. Burhan; S. M. Abdel-Hamid; M. E. Soliman; O. A. Sammour; J. Microencapsul., 2019, 36, 250–266.

Z. Xiao; W. Liu; G. Zhu; R. Zhou; Y. Niu; Flavour Fragr. J., 2014, 29, 166–172.

A. Napiórkowska; A. Szpicer; I. Wojtasik-Kalinowska; M. D. T. Perez; H. D. González; M. A. Kurek; Foods, 2023, 12, 4345.

M. Calderón-Oliver; R. Pedroza-Islas; H. B. Escalona-Buendía; J. Pedraza-Chaverri; E. Ponce-Alquicira; Food Hydrocoll., 2017, 62, 49–57.

P. J. Larkin; Infrared Raman Spectrosc., 2018, 85–134.

H. H. Musa; A. A. Ahmed; T. H. Musa; In Gum Arabic: Chemistry, Biological and Pharmacological Properties; Springer, 2019; pp. 797–814.

B. H. Stuart; In Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2004; pp. 71–80.

L. Ciko; A. Andoni; F. Ylli; E. Plaku; K. Taraj; A. Çomo; Asian J. Chem., 2016, 28, 1401–1402.

L. Ang; Y. Darwis; L. Por; M. Yam; Pharmaceutics, 2019, 11, 451.

Downloads

Published

2024-09-30

How to Cite

SZÉKELY-SZENTMIKLÓSI, I., RÉDAI, E. M., VLAD, R.-A., SZABÓ, Z., KOVÁCS, B., GERGELY, A.-L., … SIPOS, E. (2024). Microencapsulation of Salvia Officinalis L. Essential Oil by Complex Coacervation Technology. Studia Universitatis Babeș-Bolyai Chemia, 69(3), 221–241. https://doi.org/10.24193/subbchem.2024.3.14

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.