Microencapsulation of Salvia Officinalis L. Essential Oil by Complex Coacervation Technology
DOI:
https://doi.org/10.24193/subbchem.2024.3.14Keywords:
microencapsulation, complex coacervation, essential oil, Salvia officinalis L.Abstract
The essential oil of Salvia officinalis L. (sage) exhibits versatile biological properties. The high sensitivity of sage essential oil (SEO) to environmental conditions and limited processability represent important hurdles in its use, which, however, can be overcome by microencapsulation. The objective of the current study was to encapsulate sage essential oil into core-shell type microcapsules by complex coacervation technology and to transform it into solid form by freeze-drying. Arabic gum (GA) and three different type A gelatin (G) grades were used to investigate the effect of the gel strength on microcapsule characteristics. The formation of essential oil containing microcapsules during complex coacervation was assessed by optical microscopy while SEM imaging was used to determine the morphology of the freeze-dried forms. Characterization of microcapsules was completed with FT-IR spectroscopy. Encapsulation efficiency was determined by UV-VIS spectrophotometry and the composition of essential oil by GC-MS technique. Results revealed that by the application of selected microencapsulation technology and freeze-drying method high encapsulation efficiency values could be achieved, the gel strength of gelatin has a decisive role in microcapsule particle size and the composition of essential oil is well preserved following the technological process.
References
Committee on Herbal Medicinal Products (HMPC); EMA Salvia Monograph, 2016, 44.
Committee on Herbal Medicinal Products (HMPC); Eur. Med. Agency - Comm. Herb. Med. Prod., 2016, 44.
M. Jakovljević; S. Jokić; M. Molnar; M. Jašić; J. Babić; H. Jukić; I. Banjari; Plants, 2019, 8, 55.
A. L. Lopresti; Drugs R D, 2017, 17, 53–64.
G. P. Eckert; Front. Pharmacol., 2010, 1, 138.
M. Miroddi; M. Navarra; M. C. Quattropani; F. Calapai; S. Gangemi; G. Calapai; CNS Neurosci. Ther., 2014, 20, 485–495.
D. O. Kennedy; S. Pace; C. Haskell; E. J. Okello; A. Milne; A. B. Scholey; Neuropsychopharmacology, 2006, 31, 845–852.
T. Hase; S. Shishido; S. Yamamoto; R. Yamashita; H. Nukima; S. Taira; T. Toyoda; K. Abe; T. Hamaguchi; K. Ono et al.; Sci. Rep., 2019, 9, 1–13.
S. Datta; S. Patil; J. Alzheimer’s Dis., 2020, 12, 131–143.
S. K. El Euch; D. B. Hassine; S. Cazaux; N. Bouzouita; J. Bouajila; South African J. Bot., 2019, 120, 253–260.
R. Tundis; M. Leporini; M. Bonesi; S. Rovito; N. G. Passalacqua; Molecules, 2020, 25, 5826.
R. Bleiziffer; C. Mesaros; S. Suvar; P. Podea; A. Iordache; F.-D. Yudin; M. Culea; Stud. Univ. Babeș-Bolyai Chem., 2017, 62, 373–385.
A. Russo; C. Formisano; D. Rigano; F. Senatore; S. Delfine; V. Cardile; S. Rosselli; M. Bruno; Food Chem. Toxicol., 2013, 55, 42–47.
S. Sertel; T. Eichhorn; P. K. Plinkert; T. Efferth; HNO, 2011, 59, 1203–1208.
M. Yanagimichi; K. Nishino; A. Sakamoto; R. Kurodai; K. Kojima; N. Eto; H. Isoda; R. Ksouri; K. Irie; T. Kambe et al.; Biochem. Biophys. Reports, 2021, 25, 100882.
H. A. Mohammed; H. M. Eldeeb; R. A. Khan; M. S. Al-Omar; S. A. A. Mohammed; M. S. M. Sajid; M. S. A. Aly; A. M. Ahmad; A. A. H. Abdellatif; S. Y. Eid et al.; Molecules, 2021, 26, 5757.
C. Turek; F. C. Stintzing; Compr. Rev. Food Sci. Food Saf., 2013, 12, 40–53.
International Organization for Standardization; Oil of Dalmatian Sage (Salvia Officinalis L.); Geneva, Switzerland, 1997; Vol. ISO 9909:1.
G. Tibaldi; S. Hazrati; S. J. Hosseini; A. Ertani; R. Bulgari; S. Nicola; Ind. Crops Prod., 2022, 183, 114923.
V. I. Sousa; J. F. Parente; J. F. Marques; M. A. Forte; C. J. Tavares; Polymers (Basel), 2022, 14, 1730.
M. Arenas-Jal; J. M. Suñé-Negre; E. García-Montoya; Eur. Food Res. Technol., 2020, 246, 1371–1382.
C. Thies; In Encapsulation and Controlled Release Technologies in Food Systems; J. M. Lakkis, Ed.; John Wiley & Sons Inc., 2016; pp. 41–77.
F. W. Tiebackx; Zeitschrift für Chemie und Ind. der Kolloide, 1911, 8, 198–201.
G. O. Fanger; In Microencapsulation; Springer US: Boston, MA, 1974; pp. 1–20.
Y. P. Timilsena; T. O. Akanbi; N. Khalid; B. Adhikari; C. J. Barrow; Int. J. Biol. Macromol., 2019, 121, 1276–1286.
Z. Xiao; W. Liu; G. Zhu; R. Zhou; Y. Niu; J. Sci. Food Agric., 2014, 94, 1482–1494.
F. Milano; A. Masi; M. Madaghiele; A. Sannino; L. Salvatore; N. Gallo; Pharmaceutics, 2023, 15, 1499.
C. E. Sing; S. L. Perry; Soft Matter, 2020, 16, 2885–2914.
L. Zhou; H. Shi; Z. Li; C. He; Macromol. Rapid Commun., 2020, 41, 1–20.
H. J. W. Peters; E. M. G. van Bommel; J. G. F.; Drug Dev. Ind. Pharm., 1992, 18, 123–134.
B. Liu; L. Lai; B. Muhoza; S. Xia; Food Biosci., 2021, 44, 101403.
R. Shaddel; J. Hesari; S. Azadmard-Damirchi; H. Hamishehkar; B. Fathi-Achachlouei; Q. Huang; Int. J. Biol. Macromol., 2018, 107, 1800–1810.
I. D. Alvim; C. R. F. Grosso; Ciência e Tecnol. Aliment., 2010, 30, 1069–1076.
S. Leclercq; K. R. Harlander; G. A. Reineccius; Flavour Fragr. J., 2009, 24, 17–24.
A. S. Prata; M. H. A. Zanin; M. I. Ré; C. R. F. Grosso; Colloids Surfaces B Biointerfaces, 2008, 67, 171–178.
A. S. Prata; C. R. F. Grosso; J. Am. Oil Chem. Soc., 2015, 92, 1063–1072.
Y. P. Lemos; P. H. Mariano Marfil; V. R. Nicoletti; Int. J. Food Prop., 2017, 20, 1–10.
B. Muhoza; S. Xia; J. Cai; X. Zhang; E. Duhoranimana; J. Su; Food Hydrocoll., 2019, 87, 712–722.
B. Muhoza; S. Xia; X. Zhang; Food Hydrocoll., 2019, 97, 105174.
Z. Rousi; C. Malhiac; D. G. Fatouros; A. Paraskevopoulou; Food Hydrocoll., 2019, 96, 577–588.
W. Yang; Y. Gong; Y. Wang; C. Wu; X. Zhang; J. Li; D. Wu; RSC Adv., 2024, 14, 4880–4889.
T. A. Comunian; J. Gomez-Estaca; R. Ferro-Furtado; G. J. A. Conceição; I. C. F. Moraes; I. A. De Castro; C. S. Favaro-Trindade; Carbohydr. Polym., 2016, 150, 319–329.
P. H. M. Marfil; B. B. Paulo; I. D. Alvim; V. R. Nicoletti; J. Food Process Eng., 2018, 41, 1–11.
G. A. Rocha-Selmi; F. T. Bozza; M. Thomazini; H. M. A. Bolini; C. S. Fávaro-Trindade; Food Chem., 2013, 139, 72–78.
M. G. Santos; F. T. Bozza; M. Thomazini; C. S. Favaro-Trindade; Food Chem., 2015, 171, 32–39.
T. A. Comunian; M. Thomazini; A. J. G. Alves; F. E. De Matos Junior; J. C. De Carvalho Balieiro; C. S. Favaro-Trindade; Food Res. Int., 2013, 52, 373–379.
T. Baj; A. Ludwiczuk; E. Sieniawska; K. Skalicka-Woźniak; J. Widelski; K. Zieba; K. Głowniak; Acta Pol. Pharm., 2013, 70, 35–40.
N. D. Gonçalves; C. R. F. Grosso; R. S. Rabelo; M. D. Hubinger; A. S. Prata; Carbohydr. Polym., 2018, 196, 427–432.
R. Zhang; L. Huang; X. Xiong; M. C. Qian; H. Ji; Flavour Fragr. J., 2020, 35, 157–166.
F. Baghi; S. Ghnimi; E. Dumas; A. Gharsallaoui; Appl. Sci., 2023, 13, 6184.
X.-Y. Qv; Z.-P. Zeng; J.-G. Jiang; Food Hydrocoll., 2011, 25, 1596–1603.
G. A. Rocha-Selmi; C. S. Favaro-Trindade; C. R. F. Grosso; J. Chem., 2013, 2013, 982603.
S. Ferreira; V. R. Nicoletti; J. Food Eng., 2021, 291, 110214.
A. Rungwasantisuk; S. Raibhu; Prog. Org. Coatings, 2020, 149, 105924.
A. M. Burhan; S. M. Abdel-Hamid; M. E. Soliman; O. A. Sammour; J. Microencapsul., 2019, 36, 250–266.
Z. Xiao; W. Liu; G. Zhu; R. Zhou; Y. Niu; Flavour Fragr. J., 2014, 29, 166–172.
A. Napiórkowska; A. Szpicer; I. Wojtasik-Kalinowska; M. D. T. Perez; H. D. González; M. A. Kurek; Foods, 2023, 12, 4345.
M. Calderón-Oliver; R. Pedroza-Islas; H. B. Escalona-Buendía; J. Pedraza-Chaverri; E. Ponce-Alquicira; Food Hydrocoll., 2017, 62, 49–57.
P. J. Larkin; Infrared Raman Spectrosc., 2018, 85–134.
H. H. Musa; A. A. Ahmed; T. H. Musa; In Gum Arabic: Chemistry, Biological and Pharmacological Properties; Springer, 2019; pp. 797–814.
B. H. Stuart; In Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2004; pp. 71–80.
L. Ciko; A. Andoni; F. Ylli; E. Plaku; K. Taraj; A. Çomo; Asian J. Chem., 2016, 28, 1401–1402.
L. Ang; Y. Darwis; L. Por; M. Yam; Pharmaceutics, 2019, 11, 451.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.