1-PHOSPHA-2-AZANORBORNENE AS PRECURSOR FOR 1-PHOSPHA-BICYCLO[3.2.1]OCTA-2,5-DIENE
DOI:
https://doi.org/10.24193/subbchem.2025.4.17Keywords:
P-heterocycles, phosphanes, reduction, ring expansion, sulfonamidesAbstract
1-Phospha-2-azanorbornenes, the cycloaddition products of 2H-phospholes with a sulfonyl imine, can be converted to 1-phospha-bicyclo[3.2.1]octa-2,5-dienes by a reductive rearrangement. This reaction is, however, dependent on the substituent R in a-position. While a clean reaction is observed for R = H or Ph, the 2-pyridyl derivative leads to a complex product mixtures.
References
1. F. Mathey, Acc. Chem. Res. 2004, 37, 954–960.
2. T. Möller, M. B. Sárosi, E. Hey-Hawkins, Chem. Eur. J. 2012, 18, 16604–16607.
3. P. Le Goff, F. Mathey, L. Ricard, J. Org. Chem. 1989, 54, 4754–4758.
4. K. Zhang, Q. Zhang, D. Wei, R. Tian, Z. Duan, Org. Chem. Front. 2021, 8, 3740–3745.
5. F. Mathey, F. Mercier, F. Robin, L. Ricard, J. Organomet. Chem. 1998, 557, 117–120.
6. P. Toullec, L. Ricard, F. Mathey, J. Org. Chem. 2003, 68, 2803–2806.
7. P. Wonneberger, N. König, F. B. Kraft, M. B. Sárosi, E. Hey-Hawkins, Angew. Chem. Int. Ed. 2019, 58, 3208–3211; Angew. Chem. 2019, 131, 3240–3244.
8. a) K. Ramazanova, P. Lönnecke, E. Hey‐Hawkins, Chem. Eur. J 2023, 29, e202300790, b) K. Ramazanova, A.K. Müller, P. Lönnecke, O. Hollóczki, B. Kirchner, E. Hey‐Hawkins, Molecules 2023, 28, 7163.
9. P. Wonneberger, N. König, M. B. Sárosi, E. Hey-Hawkins, Chem. Eur. J. 2021, 27, 7847–7852.
10. J. E. MacDiarmid, L. D. Quin, J. Org. Chem. 1981, 46, 1451–1456.
11. L. D. Quin, S. C. Spence, Tetrahedron Lett. 1982, 23, 2529–2532.
12. D. G. Gilheany, B. J. Walker, Phosphorus Sulfur Relat. Elem. 1983, 18, 183–186.
13. B. Krauss, C. Mügge, B. Ziemer, A. Zschunke, F. Krech, Z. Anorg. Allg. Chem. 2001, 627, 1542–1552.
14. O. Löber, U. Bergsträßer, M. Regitz, Synthesis 1999, 4, 644-649.
15. Y. Liu, X. Fan, R. Tian, Z. Duan, Org. Lett. 2021, 23, 2943−2947.
16. a) X. He, J. Borau-Garcia, A. Y. Y. Woo, S. Trudel, T. Baumgartner, J. Am. Chem. Soc. 2013, 135, 1137–1147; (b) T. Delouche, R. Mokrai, T. Roisnel, D. Tondelier, B. Geffroy, L. Nyulászi, Z. Benkö, M. Hissler, P.-A. Bouit, Chem. Eur. J. 2020, 26, 1856–1863; (c) E. Regulska, H. Ruppert, F. Rominger, C. Romero-Nieto, J. Org. Chem. 2020, 85, 1247–1252.
17. (a) S. Gladiali, A. Dore, D. Fabbri, O. D. Lucchi and M. Massanero, Tetrahedron: Asymm. 1994, 5, 511–514; (b) P. Nareddy, L. Mantilli, L. Guénée, and C. Mazet, Angew. Chem., Int. Ed. 2012, 51, 3826–3831; (c) R. Mokrai, A. Mocanu, M. P. Duffy, T. Vives, E. Caytan, V. Dorcet, T. Roisnel, L. Nyulászi, Z. Benkö, P.-A. Bouit, M. Hissler, Chem. Commun. 2021, 57, 7256–7259
18. R. K. Harris, E. D. Becker, S. M. Cabral De Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795–1818; Concepts Magn. Reson. Part A 2002, 14, 326–346.
19. CrysAlisPro Software system (1995-2025), Rigaku Oxford Diffraction, Wroclaw, Poland.
20. SHELXT-2018: G. M. Sheldrick, Acta Cryst., 2015, A71, 3–8.
21. SHELXL-2018: G. M. Sheldrick, Acta Cryst., 2015, C71, 3–8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
