On a functional differential inclusion

Authors

  • Aurelian CERNEA University of Bucharest Faculty of Mathematics and Computer Sciences 14, Academiei Street, 010014 Bucharest, Romania e-mail: acernea@fmi.unibuc.ro

Keywords:

set-valued map, functional differential inclusion, relaxation.

Abstract

We consider a Cauchy problem associated to a nonconvex functional dierential inclusion and we prove a Filippov type existence result. This result allows to obtain a relaxation theorem for the problem considered.

Mathematics Subject Classification (2010): 34A60, 34K05, 34K15, 47H10.

References

Aubin, J.P., Frankowska, H., Set-valued Analysis, Birkhauser, Basel, 1990.

Bellman, R.E., Cooke, K.L., Differential-difference Equations, Academic Press, New York, 1963.

Filippov, A.F., Classical solutions of differential equations with multivalued right hand side, SIAM J. Control, 5(1967), 609-621.

Hiai, F., Umegaki, H., Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal., 7(1977), 149-182.

Muresan, V., On a functional-differential equation, Proc. 10th IC-FPTA, Ed., R. Espinola, A. Petrusel, S. Prus, House of the Book of Science, Cluj-Napoca, 2013, 201-208.

Downloads

Published

2015-09-30

How to Cite

CERNEA, A. (2015). On a functional differential inclusion. Studia Universitatis Babeș-Bolyai Mathematica, 60(3), 431–436. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5794

Issue

Section

Articles

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.