Ball convergence for combined three-step methods under generalized conditions in Banach space
DOI:
https://doi.org/10.24193/subbmath.2020.1.10Keywords:
Iterative method, local convergence, Banach space, Lipschitz constant, order of convergence.Abstract
We give a local convergence analysis for an eighth-order convergent method in order to approximate a locally unique solution of nonlinear equation for Banach space valued operators. In contrast to the earlier studies using hypotheses up to the seventh Fr´echet-derivative, we only use hypotheses on the first-order Fr´echet-derivative and Lipschitz constants. Therefore, we not only expand the applicability of these methods but also provide the computable radius of convergence of these methods. Finally, numerical examples show that our results apply to solve those nonlinear equations but earlier results cannot be used.
Mathematics Subject Classification (2010): 65G99, 65H10, 47J25, 47J05, 65D10, 65D99.
References
Amat, S., Busquier, S., Plaza, S., Dynamics of the King and Jarratt iterations, Aequationes Math., 69(2005), no. 3, 212-223.
Amat, S., Busquier, S., Plaza, S., Guti´errez, J.M., Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., 157(2003), 197-205.
Amat, S., Herna´ndez, M.A., Romero, N., A modified Chebyshev’s iterative method with at least sixth order of convergence, Appl. Math. Comput., 206(2008), no. 1, 164-174.
Argyros, I.K., Convergence and Application of Newton-type Iterations, Springer, 2008. [5] Argyros, I.K., George, S., Ball comparison for three optimal eight order methods under weak conditions, Stud. Univ. Babe¸s-Bolyai Math., 64(2019), no. 3, 421-431.
Argyros, I.A., George, S., Local convergence of some higher-order Newton-like method with frozen derivative, SeMa, DOI: 10.1007/s40324-015-00398-8.
Argyros, I.K., Hilout, S., Computational Methods in Nonlinear Analysis, World Scientific Publ. Comp. New Jersey, 2013.
Argyros, I.K., Magren˜a´n, A´ .A., Ball convergence theorems and the convergence planes of an iterative methods for nonlinear equations, SeMA, 71(2015), no. 1, 39-55.
Chen, S.P., Qian, Y.H., A family of combined iterative methods for solving nonlinear equations, Appl. Math. Comput. (to appear).
Cordero, A., Torregrosa, J.R., Variants of Newton’s method using fifth-order quadrature formulas, Appl. Math. Comput., 190(2007), 686-698.
Cordero, A., Torregrosa, J.R., Variants of Newton’s method for functions of several variables, Appl. Math. Comput., 183(2006), 199-208.
Cordero, A., Torregrosa, J.R., Vassileva, M.P., Increasing the order of convergence of iterative schemes for solving nonlinear system, J. Comput. Appl. Math., 252(2012), 86- 94.
Ezquerro, J.A., Herna´ndez, M.A., New iterations of R-order four with reduced computational cost, BIT Numer. Math., 49(2009), 325-342.
Ezquerro, J.A., Herna´ndez, M.A., A uniparametric Halley type iteration with free second derivative, Int. J. Pure and Appl. Math., 6(2003), no. 1, 99-110.
Guti´errez, J.M., Herna´ndez, M.A., Recurrence relations for the super-Halley method, Comput. Math. Appl., 36(1998), 1-8.
Herna´ndez, M.A., Martinez, E., On the semilocal convergence of a three steps Newton- type process under mild convergence conditions, Numer. Algor., 70(2015), 377-392.
Kansal, M., Argyros, I.K., Kanwar, V., Ball convergence of a stable forth-order family for solving nonlinear systems under weak conditions, Stud. Univ. Babe¸s-Bolyai Math., 62(2017), no. 1, 127-135.
Kou, J., A third-order modification of Newton method for systems of nonlinear equations, Appl. Math. Comput., 191(2007), 117-121.
Montazeri, H., Soleymani, F., Shateyi, S., Motsa, S.S., On a new method for computing the numerical solution of systems of nonlinear equations, J. Appl. Math., 2012, Article ID 751975.
Petkovic, M.S., Neta, B., Petkovic, L., Dˇzuniˇc, J., Multipoint Methods for Solving Nonlinear Equations, Elsevier, 2013.
Potra, F.A., Pt´ak, V., Nondiscrete Introduction and Iterative Process, Research Notes in Mathematics, 103(1984), Pitman, Boston, MA.
Rheinboldt, W.C., An Adaptive Continuation Process for Solving Systems of Nonlinear Equations, Polish Academy of Science, Banach Ctr. Publ., 3(1978), 129-142.
Sharma, J.R., Ghua, R.K., Sharma, R., An efficient fourth-order weighted-Newton method for system of nonlinear equations, Numer. Algor., 62(2013), 307-323.
Traub, J.F., Iterative methods for the solution of equations, Prentice-Hall Series in Automatic Computation, Englewood Cliffs, N.J. (1964).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.