On a functional differential inclusion
Keywords:
set-valued map, functional differential inclusion, relaxation.Abstract
We consider a Cauchy problem associated to a nonconvex functional dierential inclusion and we prove a Filippov type existence result. This result allows to obtain a relaxation theorem for the problem considered.
Mathematics Subject Classification (2010): 34A60, 34K05, 34K15, 47H10.
References
Aubin, J.P., Frankowska, H., Set-valued Analysis, Birkhauser, Basel, 1990.
Bellman, R.E., Cooke, K.L., Differential-difference Equations, Academic Press, New York, 1963.
Filippov, A.F., Classical solutions of differential equations with multivalued right hand side, SIAM J. Control, 5(1967), 609-621.
Hiai, F., Umegaki, H., Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal., 7(1977), 149-182.
Muresan, V., On a functional-differential equation, Proc. 10th IC-FPTA, Ed., R. Espinola, A. Petrusel, S. Prus, House of the Book of Science, Cluj-Napoca, 2013, 201-208.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.