A characterization of relatively compact sets in $L^p(\Omega,B)$

Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary

Authors

  • Markus GAHN Friedrich-Alexander University Erlangen-Nurnberg Department of Mathematics Cauerstrasse 11, 91058 Erlangen, Germany e-mail: markus.gahn@fau.de
  • Maria NEUSS-RADU Friedrich-Alexander University Erlangen-Nurnberg Department of Mathematics Cauerstrasse 11, 91058 Erlangen, Germany e-mail: maria.neuss-radu@math.fau.de

Keywords:

Kolmogorov-Riesz-type compactness result, Banach-space valued functions, homogenization of processes on periodic surfaces.

Abstract

We give a characterization of relatively compact sets $F$ in $L^p(\Omega,B)$ for $p\in [1,\infty)$, $B$ a Banach-space, and $\Omega \subset \R^n$. This is a generalization of the results obtained in \cite{Simon} for the space $L^p((0,T),B)$ with $T>0$, first to rectangles $\Omega =(a,b) \subset \R^n$ and, under additional conditions, to arbitrary open and bounded subsets of $\R^n$. An application of the main compactness result to a problem arising in homogenization of processes on periodic surfaces is given.

Mathematics Subject Classification (2010): 35K57, 46E40, 46B50.

References

Alt, H.W., Lineare Funktionalanalysis, Springer, 2012.

Amann, H., Compact embeddings of vector-valued Sobolev and Besov spaces, Glasnik Matemati_cki, 35(2000), 161{177.

Cioranescu, D., Donato, P., Zaki, R., The periodic unfolding method in perforated domains, Port. Math. (N.S.), 63(2006), 467-496.

Edwards, R.E., Functional Analysis - Theory and Applications, Holt, Rinhart and Winston, 1965.

Graf, I., Peter, M.A., A convergence result for the periodic unfolding method related to fast diffusion on manifolds, C. R. Acad. Sci. Paris, Ser. I, 352(6)(2014), 485-490.

Graf, I., Peter, M.A., Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells, SIAM J. Math. Anal., 46(4)(2014), 3025-3049.

Hornung, U., Jager, W., Diffusion, convection, adsorption, and reaction of chemicals in porous media, Journal of di_erential equations, 92(1991), 199-225.

Hornung, U., Jager, W., Mikeli_c, A., Reactive transport through an array of cells with semi-permeable membranes, Mathematical Modelling and Numerical Analysis -Modelisation Mathematique et Analyse Numerique, 28(1994), 59-94.

Neuss-Radu, M., Some extensions of two-scale convergence, C. R. Acad. Sci. Paris Ser. I Math., 322(1996), 899-904.

Neuss-Radu, M., Jager, W., E_ective transmission conditions for reaction-di_usion processes in domains separated by an interface, SIAM J. Math. Anal., 39(2007), 687-720.

Ptashnyk, M., Roose, T., Derivation of a macroscopic model for transport of strongly sorbed soutes in the soil using homogenization theory, SIAM J. Appl. Math., 70(2010), 2097-2118.

Simon, J., Compact sets in the space Lp(0; T;B), Ann. Mat. Pura Appl., 146(1987), 65-96.

Wloka, J., Partielle Di_erentialgleichungen, B.G. Teubner, 1982.

Downloads

Published

2016-09-30

How to Cite

GAHN, M., & NEUSS-RADU, M. (2016). A characterization of relatively compact sets in $L^p(\Omega,B)$: Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary. Studia Universitatis Babeș-Bolyai Mathematica, 61(3), 279–290. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5575

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.