Hermite–Hadamard type inequalities for F –convex functions involving generalized fractional integrals

Authors

  • Hüseyin BUDAK Department of Mathematics, Faculty of Science and Arts, Du¨zce University, Du¨zce-Turkey, e-mail: hsyn.budak@gmail.com https://orcid.org/0000-0001-8843-955X
  • Muhammad Aamir ALI Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, 210023, China, e-mail: mahr.muhammad.aamir@gmail.com
  • Artion KASHURI Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, Vlora, Albania, e-mail: artionkashuri@gmail.com https://orcid.org/0000-0003-0115-3079

DOI:

https://doi.org/10.24193/subbmath.2022.1.11

Keywords:

Hermite–Hadamard inequality, F –convex, general fractional integral.

Abstract

In this paper, we firstly summarize some properties of the family F and F –convex functions which are defined by B. Samet. Utilizing generalized fractional integrals new Hermite–Hadamard type inequalities for F –convex functions have been provided. Some results given earlier works are also as special cases of our results.

Mathematics Subject Classification (2010): 26A51, 26A33, 26D07, 26D10, 26D15.

Received 15 August 2019; Accepted 17 January 2020.

References

Ali, M.A., Budak, H., Abbas, M., Sarikaya, M.Z., Kashuri, A., Hermite–Hadamard type inequalities for h–convex functions via generalized fractional integrals, Submitted, (2019).

Budak, H., Sarikaya, M.Z., On Ostrowski type inequalities for F-convex function, AIP Conference Proceedings, 1833, 020057 (2017), doi: 10.1063/1.4981705.

Budak, H., Sarikaya, M.Z., Yildiz, M.K., Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, Filomat, 32(2018), no. 16, 5509-5518.

Budak, H., Tunc¸, T., Sarikaya, M.Z., On Hermite-Hadamard type inequalities for F-convex functions, Miskolc Math. Notes, 20(2019), no. 1, 169-191.

Defnetti, B., Sulla strati cazioni convesse, Ann. Math. Pura. Appl., 30(1949), 173-183.

Dragomir, S.S., Agarwal, R.P., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(1998), no. 5, 91-95.

Dragomir, S.S., Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien, 1997, 223-276.

Hudzik, H., Maligranda, L., Some remarks on s-convex functions, Aequationes Math., 48(1994), 100-111.

Hyers, D.H., Ulam, S.M., Approximately convex functions, Proc. Amer. Math. Soc., 3(1952), 821-828.

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, 2006.

Kirmaci, U.S., Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147(2004), 91-95.

Mangasarian, O.L., Pseudo-convex functions, SIAM Journal on Control., 3(1965), 281- 290.

Miller, S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, USA, 1993.

Mohammed, P.O., Sarikaya, M.Z., Hermite-Hadamard type inequalities for F -convex function involving fractional integrals, J. Inequal. Appl., 2018(2018), Art. no. 359.

Pearce, C.E.M., Pecaric, J., Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Math. Lett., 13(2000), 51-55.

Pecaric, J.E., Proschan, F., Tong, Y.L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.

Podlubni, I., Fractional Differential Equations, Academic Press, San Diego, 1999.

Polyak, B.T., Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7(1966), 72-75.

Samet, B., On an implicit convexity concept and some integral inequalities, J. Inequal. Appl., 2016(2016), Art. no. 308.

Sarikaya, M.Z., Aktan, N., On the generalization some integral inequalities and their applications, Math. Comput. Modelling, 54(2011), no. 9-10, 2175-2182.

Sarikaya, M.Z., Ertugral, F., On the generalized Hermite-Hadamard inequalities, Annals of the University of Craiova – Mathematics and Computer Science Series (in press).

Sarikaya, M.Z., Saglam, A., Yildirim, H., On some Hadamard-type inequalities for h−convex functions, J. Math. Inequal., 2(2008), no. 3, 335-341.

Sarikaya, M.Z., Saglam, A., Yildirim, H., New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. Open Probl. Comput. Sci. Math., IJOPCM, 5(2012), no. 3, 1-14.

Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N., Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57(2013), 2403-2407.

Sarikaya, M.Z., Tunc¸, T., Budak, H., Simpson’s type inequality for F-convex function, Facta Univ., Ser. Math. Inf., 32(2018), no. 5, 747-753.

Set, E., Mumcu, I., Hermite-Hadamard type inequalities for F-convex functions via Katugampola fractional integral, (submitted), (2018).

Varosanec, S., On h-convexity, J. Math. Anal. Appl., 326(2007), no. 1, 303-311.

Downloads

Published

2022-03-10

How to Cite

BUDAK, H., ALI, M. A., & KASHURI, A. (2022). Hermite–Hadamard type inequalities for F –convex functions involving generalized fractional integrals. Studia Universitatis Babeș-Bolyai Mathematica, 67(1), 151–166. https://doi.org/10.24193/subbmath.2022.1.11

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.