Different type parameterized inequalities via generalized integral operators with applications

Authors

DOI:

https://doi.org/10.24193/subbmath.2021.3.02

Keywords:

Trapezium inequality, Simpson inequality, preinvexity, general fractional integrals.

Abstract

The authors have proved an identity for a generalized integral operator via differentiable function with parameters. By applying the established identity, the generalized trapezium, midpoint and Simpson type integral inequalities have been discovered. It is pointed out that the results of this research provide integral inequalities for almost all fractional integrals discovered in recent past decades. Various special cases have been identified. Some applications of presented results to special means and new error estimates for the trapezium and midpoint quadrature formula have been analyzed. The ideas and techniques of this paper may stimulate further research in the field of integral inequalities.

Mathematics Subject Classification (2010): 26A51, 26A33, 26D07, 26D10, 26D15.

References

Aslani, S.M., Delavar, M.R., Vaezpour, S.M., Inequalities of Fejer type related to generalized convex functions with applications, Int. J. Anal. Appl., 16(2018), no. 1, 38-49.

Chen, F.X., Wu, S.H., Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9(2016), no. 2, 705-716.

Chu, Y.M., Khan, M.A., Khan, T.U., Ali, T., Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9(2016), no. 5, 4305-4316.

Delavar, M.R., Dragomir, S.S., On η-convexity, Math. Inequal. Appl., 20(2017), 203-216.

Delavar, M.R., De La Sen, M. Some generalizations of Hermite-Hadamard type inequalities, Springer Plus, 5(2016), no. 1661.

Dragomir, S.S., Agarwal, R.P., Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(1998), no. 5, 91-95.

Farid, G., Rehman, A.U., Generalizations of some integral inequalities for fractional integrals, Ann. Math. Sil., 31(2017), pp. 14.

Kashuri, A., Liko, R., Some new Hermite-Hadamard type inequalities and their applications, Stud. Sci. Math. Hung., 56(2019), no. 1, 103-142.

Khan, M.A., Chu, Y.M., Kashuri, A., Liko, R., Hermite-Hadamard type fractional integral inequalities for MT(r;g,m,φ)-preinvex functions, J. Comput. Anal. Appl., 26(2019), no. 8, 1487-1503.

Khan, M.A., Chu, Y.M., Kashuri, A., Liko, R., Ali, G., New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Spaces, (2018), Article ID 6928130, pp. 9.

Liu, W.J., Some Simpson type inequalities for h-convex and (α, m)-convex functions, J. Comput. Anal. Appl., 16(2014), no. 5, 1005-1012.

Liu, W., Wen, W., Park, J., Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9(2016), 766-777.

Luo, C., Du, T.S., Khan, M.A., Kashuri, A., Shen, Y., Some k-fractional integrals inequalities through generalized λφm-MT-preinvexity, J. Comput. Anal. Appl., 27(2019), no. 4, 690-705.

Mihai, M.V., Some Hermite-Hadamard type inequalities via Riemann-Liouville fractional calculus, Tamkang J. Math, 44(2013), no. 4, 411-416.

Mubeen, S., Habibullah, G.M., k-Fractional integrals and applications, Int. J. Contemp. Math. Sci., 7(2012), 89-94.

Omotoyinbo, O., Mogbodemu, A., Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1(2014), no. 1, 1-12.

Ozdemir, M.E., Dragomir, S.S., Yildiz, C., The Hadamard’s inequality for convex function via fractional integrals, Acta Math. Sci., Ser. A, Chin. Ed., 33(2013), no. 5, 153-164.

Qi, F., Xi, B.Y., Some integral inequalities of Simpson type for GA−E-convex functions, Georgian Math. J., 20(2013), no. 5, 775-788.

Sarikaya, M.Z., Ertug˘ral, F., On the generalized Hermite-Hadamard inequalities, https://www.researchgate.net/publication/321760443.

Sarikaya, M.Z., Yildirim, H., On generalization of the Riesz potential, Indian Jour. of Math. and Mathematical Sci., 3(2007), no. 2, 231-235.

Set, E., Noor, M.A., Awan, M.U., G¨ozpinar, A., Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 169(2017), 1-10.

Wang, H., Du, T.S., Zhang, Y., k-fractional integral trapezium-like inequalities through (h, m)-convex and (α, m)-convex mappings, J. Inequal. Appl., 2017(2017), no. 311, pp. 20.

Xi, B.Y., Qi, F., Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl., 2012(2012), Article ID 980438, pp. 14.

Zhang, X.M., Chu, Y.M., Zhang, X.H., The Hermite-Hadamard type inequality of GA- convex functions and its applications, J. Inequal. Appl., (2010), Article ID 507560, pp. 11.

Zhang, Y., Du, T.S., Wang, H., Shen, Y.J., Kashuri, A., Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl., 2018(2018), no. 49, pp. 30.

Downloads

Published

2021-09-30

How to Cite

KASHURI, A., & LIKO, R. (2021). Different type parameterized inequalities via generalized integral operators with applications. Studia Universitatis Babeș-Bolyai Mathematica, 66(3), 423–440. https://doi.org/10.24193/subbmath.2021.3.02

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.