On some new integral inequalities concerning twice differentiable generalized relative semi-(m, h)-preinvex mappings

Authors

DOI:

https://doi.org/10.24193/subbmath.2019.1.05

Keywords:

Hermite-Hadamard type inequality, fractional integrals, m-invex

Abstract

The authors first present some integral inequalities for Gauss-Jacobi type quadrature formula involving generalized relative semi-(m, h)-preinvex mappings. And then, a new identity concerning twice differentiable mappings defined on m-invex set is derived. By using the notion of generalized relative semi-(m, h)- preinvexity and the obtained identity as an auxiliary result, some new estimates with respect to Hermite-Hadamard type inequalities via conformable fractional integrals are established. These new presented inequalities are also applied to construct inequalities for special means.

Mathematics Subject Classification (2010): 26A51, 26A33, 26D07, 26D10, 26D15.

References

Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279(2015), 57-66.

Antczak, T., Mean value in invexity analysis, Nonlinear Anal., 60(2005), 1473-1484.

Chen, F., A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math., 33(2014), 299-306.

Chen, F.X., Wu, S.H., Several complementary inequalities to inequalities of Hermite- Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9(2016), no. 2, 705-716.

Chu, Y.-M., Khan, M.A., Khan, T.U., Ali, T., Generalizations of Hermite-Hadamard type inequalities for M T -convex functions, J. Nonlinear Sci. Appl., 9(2016), no. 5, 4305- 4316.

Chu, Y.-M., Wang, G.D., Zhang, X.H., Schur convexity and Hadamard’s inequality, Math. Inequal. Appl., 13(2010), no. 4, 725-731.

Dragomir, S.S., Peˇcari´c, J., Persson, L.E., Some inequalities of Hadamard type, Soochow J. Math., 21(1995), 335-341.

Du, T.S., Liao, J.G., Li, Y.J., Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9(2016), 3112- 3126.

Du, T.S., Liao, J.G., Chen, L.Z., Awan, M.U., Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α, m)-preinvex functions, J. Inequal. Appl., 2016(2016), Article ID 306, 24 pp.

Du, T.S., Li, Y.J., Yang, Z.Q., A generalization of Simpson’s inequality via differentiable mapping using extended (s, m)-convex functions, Appl. Math. Comput., 293(2017), 358- 369.

Kashuri, A., Liko, R., Ostrowski type fractional integral inequalities for generalized (s, m, ϕ)-preinvex functions, Aust. J. Math. Anal. Appl., 13(2016), no. 1, Art. 16, 1- 11.

Kashuri, A., Liko, R., Generalizations of Hermite-Hadamard and Ostrowski type inequalities for M Tm-preinvex functions, Proyecciones, 36(2017), no. 1, 45-80.

Kashuri, A., Liko, R., Hermite-Hadamard type fractional integral inequalities for generalized (r; s, m, ϕ)-preinvex functions, Eur. J. Pure Appl. Math., 10(2017), no. 3, 495-505.

Kavurmaci, H., Avci, M., O¨ zdemir, M.E., New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl., 2011(2011), Art. ID 86, 11 pp.

Khalil, R., Horani, M. Al, Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65-70.

Khan, M.A., Ali, T., Dragomir, S.S., Sarikaya, M.Z., Hermite- Hadamard type inequalities for conformable fractional integrals, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2017.

Khan, M.A., Chu, Y.-M., Kashuri, A., Liko, R., Hermite-Hadamard type fractional integral inequalities for M T(r;g,m,φ)-preinvex functions, J. Comput. Anal. Appl., 26(2019), no. 8, 1487-1503.

Khan, M.A., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G., New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Spaces, 2018(2018), Art. ID 6928130, 9 pp.

Khan, M.A., Khurshid, Y., Ali, T., Hermite-Hadamard inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenianae, 79(2017), no. 1, 153-164.

Khan, M.A., Khurshid, Y., Ali, T., Rehman, N., Inequalities for three times differentiable functions, J. Math., Punjab Univ., 48(2016), no. 2, 35-48.

Liu, W., New integral inequalities involving beta function via P -convexity, Miskolc Math. Notes, 15(2014), no. 2, 585-591.

Liu, W., Wen, W., Park, J., Ostrowski type fractional integral inequalities for M T -convex functions, Miskolc Math. Notes, 16(2015), no. 1, 249-256.

Liu, W., Wen, W., Park, J., Hermite-Hadamard type inequalities for M T -convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9(2016), 766-777.

Luo, C., Du, T.S., Khan, M.A., Kashuri, A., Shen, Y., Some k-fractional integrals in- equalities through generalized ϕφm-M T -preinvexity, J. Comput. Anal. Appl., 27(2019), no. 4, 690-705.

Mat-loka, M., Inequalities for h-preinvex functions, Appl. Math. Comput., 234(2014), 52-57.

Noor, M.A., Noor, K.I., Awan, M.U., Integral inequalities for coordinated harmonically convex functions, Complex Var. Elliptic Equ., 60(2015), no. 6, 776-786.

Omotoyinbo, O., Mogbodemu, A., Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1(2014), no. 1, 1-12.

O¨zdemir, M.E., Set, E., Alomari, M., Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20(2011), no. 1, 62-73.

Pachpatte, B.G., On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6(2003).

Peng, C., Zhou, C., Du, T.S., Riemann-Liouville fractional Simpson’s inequalities through generalized (m, h1, h2)-preinvexity, Ital. J. Pure Appl. Math., 38(2017), 345-367.

Pini, R., Invexity and generalized convexity, Optimization, 22(1991), 513-525.

Qi, F., Xi, B.Y., Some integral inequalities of Simpson type for GA − c-convex functions, Georgian Math. J., 20(2013), no. 5, 775-788.

Set, E., G¨ozpinar, A., A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional integrals, Submitted, Online at: https://www.researchgate.net/publication/303382148.

Set, E., Akdemir, A.O., Mumcu, I., Ostrowski type inequalities for functions whose derivatives are convex via conformable fractional integrals, Submitted, Online at: https://www.researchgate.net/publication/303382132.

Set, E., Akdemir, A.O., Mumcu, I., Chebyshev type inequalities for conformable fractional integrals, Submitted, Online at: https://www.researchgate.net/publication/303382135.

Set, E., Mumcu, I., Hermite-Hadamard-Fej´er type inequalities for conformable fractional integrals, Submitted, Online at: https://www.researchgate.net/publication/303382008.

Set, E., Sarikaya, M.Z., G¨ozpinar, A., Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., 26(2017), no. 2, 221-229.

Shi, H.N., Two Schur-convex functions related to Hadamard-type integral inequalities, Publ. Math. Debrecen, 78(2011), no. 2, 393-403.

Stancu, D.D., Coman, G., Blaga, P., Analiz˘a numeric˘a ¸si teoria aproxim˘arii, Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2002.

Tun¸c, M., G¨ov, E., S¸anal, U¨, On tgs-convex function and their inequalities, Facta Univ. Ser. Math. Inform., 30(2015), no. 5, 679-691.

Varoˇsanec, S., On h-convexity, J. Math. Anal. Appl., 326(2007), no. 1, 303-311.

Youness, E.A., E-convex sets, E-convex functions and E-convex programming, J. Optim. Theory Appl., 102(1999), 439-450.

Zhang, X.M., Chu, Y.-M., Zhang, X.H., The Hermite-Hadamard type inequality of GA- convex functions and its applications, J. Inequal. Appl., 2010(2010), Art. ID 507560, 11 pp.

Zhang, Y., Du, T.S., Wang, H., Shen, Y.J., Kashuri, A., Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl., 2018(2018), no. 49, 30 pp.

Downloads

Published

2019-03-20

How to Cite

KASHURI, A., DU, T., & LIKO, R. (2019). On some new integral inequalities concerning twice differentiable generalized relative semi-(m, h)-preinvex mappings. Studia Universitatis Babeș-Bolyai Mathematica, 64(1), 43–61. https://doi.org/10.24193/subbmath.2019.1.05

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.