Split equality variational inequality problems for pseudomonotone mappings in Banach spaces
DOI:
https://doi.org/10.24193/subbmath.2021.1.13Keywords:
Pseudomonotone mapping, split equality variational inequality prob- lem, strong convergence, variational inequality.Abstract
A new algorithm for approximating solutions of the split equality variational inequality problems (SEVIP) for pseudomonotone mappings in the setting of Banach spaces is introduced. Strong convergence of the sequence generated by the proposed algorithm to a solution of the SEVIP is then derived without assuming the Lipschitz continuity of the underlying mappings and without prior knowledge of operator norms of the bounded linear operators involved. In addition, we provide several applications of our method and provide a numerical example to illustrate the convergence of the proposed algorithm. Our results improve, consolidate and complement several results reported in the literature.
Mathematics Subject Classification (2010): 47H09, 47J20, 65K15, 47J05, 90C25.
References
Alber, Ya., Metric and generalized projection operators in Banach spaces: Properties and Applications, In: ”Theory and Applications of Nonlinear Operators of Accretive and Monotone Type” (A. G. Kartsatos Ed.), Lecture Notes in Pure and Appl. Math., Vol. 178, Dekker, New York, 1996, 15-50.
Baiocchi, C., Capelo, A., Variational and Quasivariational Inequalities; Applications to Free Boundary Problems, New York, Wiley, 1984.
Boikanyo, O.A., A strongly convergent algorithm for the split common fixed point problem, Appl. Math. Comput., 265(2015), 844-853.
Boikanyo, O.A., Zegeye, H., The split equality fixed point problem for quasi-pseudo- contractive mappings without prior knowledge of norms, Numer. Funct. Anal. Optim., 41(2020), no. 7, 759-777.
Byrne, C., Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18(2002), 441-453.
Byrne, C., Censor, Y., Gibali, A., Reich, S., The split common null point problem, J. Nonlinear Convex Anal., 13(2012), 759-775.
Ceng, L.C., Teboulle, M., Yao, J.C., Weak convergence of an iterative method for pseudo- monotone variational inequalities and fixed-point problems, J. Optim. Theory Appl., 146(2010), 19-31.
Censor, Y., Bortfeld, T., Martin, B., Trofimov, A., A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51(2006), 2353- 2365.
Censor Y., Elfving, T., A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8(1994), 221-239.
Censor, Y., Gibali, A., Reich, S., The split variational inequality problem, The Technion- Israel Institute of Technology, Haifa, (2010). arXiv:1009.3780.
Censor, Y., Gibali, A., Reich, S., Algorithms for the split variational inequality problem, Numer. Algorithms, 59(2012), 301-323.
Censor, Y., Gibali, A., Reich, S., Sabach, S., Common solutions to variational inequalities, Set-Valued Var. Anal., 20(2012), 229-247.
Censor, Y., Segal, A., The split common fixed point problem for directed operators, J. Convex Anal., 16(2009), 587-600.
Chang, S.-S., Joseph Lee, H.W., Chan, C.K., Wang L., Qin, L.J., Split feasibility problem for quasinonexpansive multi-valued mappings and total asymptotically strict pseudo-contractive mappings, Appl. Math. Comput., 219(2013), 10416-10424.
Chang, S.-S., Yao, J.-C., Kim, J.J., Yang, L., Iterative approximation to convex feasibility problems in Banach spaces, Fixed Point Theory Appl., 2007:19, Article ID 4679.
Chang, S.-S., Yao, J.-C., Wen, C.-F., Yang, L., Qin, L.-J., Common zero for a finite family of monotone mappings in Hadamard spaces with applications, Mediterr. J. Math., 15(2018), Art. no. 160.
Combettes, P.L., The Convex Feasibility Problem in Image Recovery, P. Hawkes (Ed.), Advances in Imaging and Electron Physics, vol. 95, Academic Press, New York, 1996, 155-270.
Eslamian, M., Fakhri, A., Split equality monotone variational inclusions and fixed point problem of set-valued operator, Acta Univ. Sapientiae. Mathematica, 9(2017), no. 1, 94-121.
Fichera, G., Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Acad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., Sez. I., (1964), no. 7, 91-140.
Kamimura, S., Takahashi, W., Strong convergence of proximal-type algorithm in a Banach space, SIAM J. Optim., 13(2002), 938-945.
Khanh, P.D., Vuong, P.T., Modified projection method for strongly pseudo-monotone variational inequalities, J. Global Optim., 58(2014), 341-350.
Khobotov, E.N., Modification of the extragradient method for solving variational inequalities and certain optimization problems, USSR Comput. Math. Math. Phys., 27(1987), no. 5, 120-127.
Kinderlehrer, D., Stampacchia, G., An Introduction to Variational Inequalities and Their Applications, New York: Academic Press, 1980.
Maing´e, P.E., Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16(2008), 899-912.
Marcotte, P., Applications of Khobotov’s algorithm to variational and network equilibrium problems, Info Syst Oper. Res., 29(1991), no. 4, 258-270.
Mashreghi, J., Nasri, M., Forcing strong convergence of Korpelevich’s method in Banach spaces with its applications in game theory, Nonlinear Anal., 72(2010), 2086-2099.
Moudafi, A., Split monotone variational inclusions, J. Optim. Theory Appl., 150(2011), 275-283.
Phelps, R.P., Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, vol. 1364, 2nd edn., Springer Verlag, Berlin, 1993.
Shahzad, S., Zegeye, H., Convergence theorems of common solutions for fixed point, variational inequality and equilibrium problems, J. Nonlinear Var. Anal., 3(2019), no. 2, 189-203.
Shehu, Y., Dong, Q.-L., Jiang, D., Single projection method for pseudo-monotone vari- ational inequality in Hilbert spaces, Optimization, 68(2019), 385-409.
Stampacchia, G., Formes bilineaires coercitives sur les ensemble convexes, C.R. Acad. Sci. Paris., 258(1964), 4413-4416.
Takahashi, W., Nonlinear Functional Analysis, Kindikagaku, Tokyo, 1988.
Thong, D.V., Shehu, Y., Iyiola, O.S., A new iterative method for solving pseudomonotone variational inequalities with non-Lipschitz operators, Comput. Appl. Math., 39(2020), no. 2, paper no. 108, 24 pp.
Vuong, P.T., Shehu, Y., Convergence of an extragradient-type method for variational inequality with applications to optimal control problems, Numer. Algorithms, 81(2019), 269-291.
Wang, F., Xu, H.K., Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 74(2011), 4105-4111.
Wega, G.B., Zegeye, H., Convergence results of Forward-Backward method for a zero of the sum of maximally monotone mappings in Banach spaces, Comp. Appl. Math. 39, Article no. 223 (2020).
Xu, H.K., Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc., 65(2002), 109-113.
Yao Y., Postolache, M., Iterative methods for pseudo-monotone variational inequalities and fixed-point problems, J. Optim. Theory Appl., 155(2012), 273-287.
Zalinescu, C., Convex Analysis in General Vector Spaces, World Scientific, River Edge, 2002.
Zegeye, H., Strong convergence theorems for split equality fixed point problems of η-demimetric in Banach spaces, DCDIS Ser. B Appl. Algor., 26(2019), 269-288.
Zegeye, H., Shahzad, N., Approximating common solution of variational inequality problems for two monotone mappings in Banach spaces, Optim. Lett., 5(2011), no. 4, 691-704.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.