STRUCTURAL, MORPHOLOGICAL AND DISSOLUTION PROPERTIES OF ZrO₂-BASED BIOCOMPOSITES FOR DENTAL APPLICATIONS

Authors

  • Liliana BIZO Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania https://orcid.org/0000-0002-8775-8492
  • Klara SABO Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania
  • Réka BARÁBAS Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry and Chemical Engineering of Hungarian Line of Study, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania https://orcid.org/0000-0001-6730-084X
  • Gabriel KATONA Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry and Chemical Engineering of Hungarian Line of Study, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania https://orcid.org/0000-0003-3508-0023
  • Lucian BARBU-TUDORAN Babeş-Bolyai University, Faculty of Biology and Geology, Department of Molecular Biology and Biotechnology, 1 Mihail Kogălniceanu str., RO-400084, Cluj-Napoca, RO-400015, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, RO-400293, Cluj-Napoca, Romania https://orcid.org/0000-0003-0360-016X
  • Antonela BERAR “Iuliu Hațieganu” University of Medicine and Pharmacy, Faculty of Dentistry, Department of Prosthetic Dentistry and Dental Materials, 32 Clinicilor str., RO-400006, Cluj-Napoca, Romania. *Corresponding author: berar.antonela@umfcluj.ro https://orcid.org/0000-0002-1830-7970

DOI:

https://doi.org/10.24193/subbchem.2020.1.11

Keywords:

zirconia (ZrO₂), magnesium oxide (MgO), hydroxyapatite (HAP), biocomposites.

Abstract

In the present work, zirconia-based biocomposites were prepared by adding different amounts of antibacterial magnesium oxide and bioactive and biocompatible hydroxyapatite (HAP). The biocomposites were synthesized by the conventional ceramic processing route. The structure and morphology of the materials were investigated using X-ray powder diffraction (XRPD), scanning and transmission electronic microscopy (SEM and TEM). The stability of the tetragonal structure of ZrO₂ was confirmed by XRPD analyses. Moreover, their bioactivity was studied by soaking the samples in artificial saliva (AS) to evaluate the effect of MgO and HAP on the biological performances of the prepared biocomposites. UV-VIS analyses carried out on artificial saliva after immersion of the prepared materials showed that MgO plays an important role in the post-immersion dissolution process.

References

K. Nakamura; T. Kanno; P. Milleding; U. Ortengren; Int. J. Prosthodont., 2010, 23, 299-309

H. J. Wenz; J. Bartsch; S. Wolfart; M. Kern; Int. J. Prosthodont., 2008, 21, 27-36

M. Hisbergues; S. Vendeville; P. Vendeville; J. Biomed. Mater. Res. B Appl. Biomater., 2009, 88(2), 519-529

S. D. Heintze; V. Rousson; Int. J. Prosthodont., 2010, 23, 493-502

L. Nistor; M. Grădinaru; R. Rîcă; P. Mărășescu; M. Stan; H. Manolea; A. Ionescu; I. Moraru; Curr. Health Sci. J., 2019, 45, 28-35

J. S. Schley; N. Heussen; S. Reich; J. Fischer; K. Haselhuhn; S. Wolfart; Eur. J. Oral Sci., 2010, 118, 443-50

A. L. Gomes; J. Montero; Med Oral Patol Oral Cir Bucal., 2011, 16(1), e50-e55

A. J. Raigrodski; M. B. Hillstead; G. K. Meng; K.-H. Chung; J. Prosthet Dent., 2012, 107, 170-177

P. Triwatana; N. Nagaviroj; C. Tulapornchai; J. Adv. Prosthodont., 2012, 4, 76-83

E. D. Roumanas; J. Evid. Based Dent. Pr., 2013, 13, 14-5

R. D. L. Mattiello; T. M. K. Coelho; E. Insaurralde; A. A. K. Coelho; G. P. Terra; A. V. B. Kasuya; I. N. Favarão; L. de S. Gonccalves; R. B. Fonseca; ISRN Biomater, 2013, 1-10

R. H. French; S. J. Glass; F. S. Ohuchi; Y.-N. Xu; W. Y. Ching; Phys. Rev. B., 1994, 49, 5133-5142

J. P. Goff, W. Hayes, S. Hull, M. T. Hutchings; K. N. Clausen; Phys. Rev. B., 1999, 59(22), 14202-14219

I. Denry; J. R. Kelly; Dent. Mater., 2008, 24, 3, 299-307

B. Al-Amleh; K. Lyons; M. Swain; J. Oral Rehabil., 2010, 37, 641-52

J. Chevalier; L. Gremillard; A. V. Virkar; D. R. Clarke; J. Am. Ceram. Soc., 2009, 92, 1901–20

E. C. Subbarao; Zirconia - an overview, in Advanced Ceramics, Science and Technology of Zirconia, A. H. Heurer and L. W. Hobbs Eds.; The American Chemical Society, Columbus, OH, USA, vol. 3, 1981, pp.1-24

G. Wang; X. Liu; C. Ding; Surf. Coatings Technol., 2008, 202, 5824-5831

Y.-W. Hsu; K.-H. Yang; K.-M. Chang; S.-W. Yeh; M.-C. Wang; J. Alloys Compd., 2011, 509, 6864-6870

S. Nath; S. Baja; B. Basu; Int. J. Appl. Ceram. Technol., 2008, 5(1), 49-62

Y. Rao; W. Wang; F. Tan; Y. Chi; J. Lu; X. Qiao; Appl. Surf. Sci., 2013, 284, 726-731

K. Krishnamoorthy; G. Manivannan; S. J. Kim; K. Jeyasubramanian; M. Premanathan; J. Nanopart. Res., 2012, 14(9), 1063, 1-10

S. Makhluf; R. Dror; Y. Nitzan; Y. Abramovich; R. Jelinek; A. Gedanken; Adv. Funct. Mater., 2005, 15(10), 1708-1715

R. Z. LeGeros; Clin. Orthop., 2002, 395, 81–98

I. Antoniac; Bioceramics and Biocomposites: From Research to Clinical Practice, Wiley-VCH, Weinheim, New York, 2019, pp. 400

A. L. Patterson; Phys. Rev., 1939, 56, 978-982

L. Renuka; H. P. Nagaswarupa; S. C. Prashantha; K. S. Anantharaju; S. C. Sharma; H. Nagabhushana; Y. S. Vidya, J. Alloys Compd., 2016, 672, 609-622

L. Hu; C. Wang; Y. Huang; J. Mater. Sci., 2010, 45, 3242–3246

B. Annaz; K. A. Hing; M. Kayser; T. Buckland; L. Di Silvio; J. Microsc., 2004, 215, 100-110

L. Grima; M.Díaz-Pérez; J. Gil; D. Sola; J.I. Peña; Appl. Sci., 2020, 10(1), 1-15

R. Barabás; M. Czikó; I. Dékány; L. Bizo; E. S. Bogya, Chem. Pap., 2013, 67(11), 1414–1423

R. Barabás; E. de Souza Ávila; L. O. Ladeira; L. Mosqueira Antônio; R. Tötös; D. Simedru; L. Bizo; O. Cadar; Arab. J. Sci. Eng., 2020, 45, 219-227

R. Barabás; D. Deemter; G. Katona; G. Batin; L. Barabas; L.Bizo; O. Cadar; Turk. J. Chem., 2019, 43(3), 809-824

R. Barabás; N. Muntean; G. Szabó; K. Maurer; L. Bizo; Studia UBB Chemia, 2017, LXII, 4(II), 253-268

E. S. Bogya, I. Bâldea, R. Barabás, A. Csavdári, G. Turdean, V. R. Dejeu, Studia UBB Chemia, 2010, 2(2), 363-373

R. Barabás, M. Rigó, M. Eniszné-Bódogh, C. Moisa, O. Cadar, Studia UBB Chemia, LXIII, 2018, 3, 137-154

K. Engelhart; A. Popescu; J. Bernhardt; BMC Ear Nose Throat Disord., 2016, 16(6), 1-7

Downloads

Published

2020-03-20

How to Cite

BIZO, L., SABO, K., BARÁBAS, R., KATONA, G., BARBU-TUDORAN, L., & BERAR, A. (2020). STRUCTURAL, MORPHOLOGICAL AND DISSOLUTION PROPERTIES OF ZrO₂-BASED BIOCOMPOSITES FOR DENTAL APPLICATIONS. Studia Universitatis Babeș-Bolyai Chemia, 65(1), 137–148. https://doi.org/10.24193/subbchem.2020.1.11

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.