STRUCTURAL, MORPHOLOGICAL AND DISSOLUTION PROPERTIES OF ZrO₂-BASED BIOCOMPOSITES FOR DENTAL APPLICATIONS
DOI:
https://doi.org/10.24193/subbchem.2020.1.11Keywords:
zirconia (ZrO₂), magnesium oxide (MgO), hydroxyapatite (HAP), biocomposites.Abstract
In the present work, zirconia-based biocomposites were prepared by adding different amounts of antibacterial magnesium oxide and bioactive and biocompatible hydroxyapatite (HAP). The biocomposites were synthesized by the conventional ceramic processing route. The structure and morphology of the materials were investigated using X-ray powder diffraction (XRPD), scanning and transmission electronic microscopy (SEM and TEM). The stability of the tetragonal structure of ZrO₂ was confirmed by XRPD analyses. Moreover, their bioactivity was studied by soaking the samples in artificial saliva (AS) to evaluate the effect of MgO and HAP on the biological performances of the prepared biocomposites. UV-VIS analyses carried out on artificial saliva after immersion of the prepared materials showed that MgO plays an important role in the post-immersion dissolution process.References
K. Nakamura; T. Kanno; P. Milleding; U. Ortengren; Int. J. Prosthodont., 2010, 23, 299-309
H. J. Wenz; J. Bartsch; S. Wolfart; M. Kern; Int. J. Prosthodont., 2008, 21, 27-36
M. Hisbergues; S. Vendeville; P. Vendeville; J. Biomed. Mater. Res. B Appl. Biomater., 2009, 88(2), 519-529
S. D. Heintze; V. Rousson; Int. J. Prosthodont., 2010, 23, 493-502
L. Nistor; M. Grădinaru; R. Rîcă; P. Mărășescu; M. Stan; H. Manolea; A. Ionescu; I. Moraru; Curr. Health Sci. J., 2019, 45, 28-35
J. S. Schley; N. Heussen; S. Reich; J. Fischer; K. Haselhuhn; S. Wolfart; Eur. J. Oral Sci., 2010, 118, 443-50
A. L. Gomes; J. Montero; Med Oral Patol Oral Cir Bucal., 2011, 16(1), e50-e55
A. J. Raigrodski; M. B. Hillstead; G. K. Meng; K.-H. Chung; J. Prosthet Dent., 2012, 107, 170-177
P. Triwatana; N. Nagaviroj; C. Tulapornchai; J. Adv. Prosthodont., 2012, 4, 76-83
E. D. Roumanas; J. Evid. Based Dent. Pr., 2013, 13, 14-5
R. D. L. Mattiello; T. M. K. Coelho; E. Insaurralde; A. A. K. Coelho; G. P. Terra; A. V. B. Kasuya; I. N. Favarão; L. de S. Gonccalves; R. B. Fonseca; ISRN Biomater, 2013, 1-10
R. H. French; S. J. Glass; F. S. Ohuchi; Y.-N. Xu; W. Y. Ching; Phys. Rev. B., 1994, 49, 5133-5142
J. P. Goff, W. Hayes, S. Hull, M. T. Hutchings; K. N. Clausen; Phys. Rev. B., 1999, 59(22), 14202-14219
I. Denry; J. R. Kelly; Dent. Mater., 2008, 24, 3, 299-307
B. Al-Amleh; K. Lyons; M. Swain; J. Oral Rehabil., 2010, 37, 641-52
J. Chevalier; L. Gremillard; A. V. Virkar; D. R. Clarke; J. Am. Ceram. Soc., 2009, 92, 1901–20
E. C. Subbarao; Zirconia - an overview, in Advanced Ceramics, Science and Technology of Zirconia, A. H. Heurer and L. W. Hobbs Eds.; The American Chemical Society, Columbus, OH, USA, vol. 3, 1981, pp.1-24
G. Wang; X. Liu; C. Ding; Surf. Coatings Technol., 2008, 202, 5824-5831
Y.-W. Hsu; K.-H. Yang; K.-M. Chang; S.-W. Yeh; M.-C. Wang; J. Alloys Compd., 2011, 509, 6864-6870
S. Nath; S. Baja; B. Basu; Int. J. Appl. Ceram. Technol., 2008, 5(1), 49-62
Y. Rao; W. Wang; F. Tan; Y. Chi; J. Lu; X. Qiao; Appl. Surf. Sci., 2013, 284, 726-731
K. Krishnamoorthy; G. Manivannan; S. J. Kim; K. Jeyasubramanian; M. Premanathan; J. Nanopart. Res., 2012, 14(9), 1063, 1-10
S. Makhluf; R. Dror; Y. Nitzan; Y. Abramovich; R. Jelinek; A. Gedanken; Adv. Funct. Mater., 2005, 15(10), 1708-1715
R. Z. LeGeros; Clin. Orthop., 2002, 395, 81–98
I. Antoniac; Bioceramics and Biocomposites: From Research to Clinical Practice, Wiley-VCH, Weinheim, New York, 2019, pp. 400
A. L. Patterson; Phys. Rev., 1939, 56, 978-982
L. Renuka; H. P. Nagaswarupa; S. C. Prashantha; K. S. Anantharaju; S. C. Sharma; H. Nagabhushana; Y. S. Vidya, J. Alloys Compd., 2016, 672, 609-622
L. Hu; C. Wang; Y. Huang; J. Mater. Sci., 2010, 45, 3242–3246
B. Annaz; K. A. Hing; M. Kayser; T. Buckland; L. Di Silvio; J. Microsc., 2004, 215, 100-110
L. Grima; M.Díaz-Pérez; J. Gil; D. Sola; J.I. Peña; Appl. Sci., 2020, 10(1), 1-15
R. Barabás; M. Czikó; I. Dékány; L. Bizo; E. S. Bogya, Chem. Pap., 2013, 67(11), 1414–1423
R. Barabás; E. de Souza Ávila; L. O. Ladeira; L. Mosqueira Antônio; R. Tötös; D. Simedru; L. Bizo; O. Cadar; Arab. J. Sci. Eng., 2020, 45, 219-227
R. Barabás; D. Deemter; G. Katona; G. Batin; L. Barabas; L.Bizo; O. Cadar; Turk. J. Chem., 2019, 43(3), 809-824
R. Barabás; N. Muntean; G. Szabó; K. Maurer; L. Bizo; Studia UBB Chemia, 2017, LXII, 4(II), 253-268
E. S. Bogya, I. Bâldea, R. Barabás, A. Csavdári, G. Turdean, V. R. Dejeu, Studia UBB Chemia, 2010, 2(2), 363-373
R. Barabás, M. Rigó, M. Eniszné-Bódogh, C. Moisa, O. Cadar, Studia UBB Chemia, LXIII, 2018, 3, 137-154
K. Engelhart; A. Popescu; J. Bernhardt; BMC Ear Nose Throat Disord., 2016, 16(6), 1-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.