STUDY OF ELECTROCHEMICAL BEHAVIOR OF VI-B GROUP METAL OXIDES IN TUNGSTATE MELT

Authors

  • Victor MALYSHEV International European University, 42 V Academician Glushkov Avenue, 03187, Kyiv, Ukraine https://orcid.org/0000-0002-2768-8760
  • Angelina GAB International European University, 42 V Academician Glushkov Avenue, 03187, Kyiv, Ukraine https://orcid.org/0000-0003-3162-7159
  • Ana-Maria POPESCU Romanian Academy, "Ilie Murgulescu" Institute of Physical Chemistry, Laboratory of Electrochemistry and Corrosion, 202 Splaiul Independentei, 060021, Bucharest, Romania, *popescuamj@yahoo.com. https://orcid.org/0000-0001-9019-706X
  • Virgil CONSTANTIN Romanian Academy, "Ilie Murgulescu" Institute of Physical Chemistry, Laboratory of Electrochemistry and Corrosion, 202 Splaiul Independentei, 060021, Bucharest, Romania, *virgilconstantin@yahoo.com. https://orcid.org/0000-0002-5076-9489

DOI:

https://doi.org/10.24193/subbchem.2025.4.03

Keywords:

VI-B group metals, thermodynamic assessment, electrochemical behavior, multielectron processes

Abstract

Thermodynamic assessment of the probability of interaction of metal oxides of group VI-B with tungstate melts, the results of the study of the acid-base properties of tungstate melt by potentiometric method. Analysis of the presented experimental data on the study of the electrochemical behavior of chromium, molybdenum and tungsten under equilibrium and non-equilibrium conditions allows us to conclude that it is possible to implement multi-electron reversible equilibria and electroreduction processes involving oxide forms of chromium, molybdenum and tungsten (VI) in tungstate melts. The mechanism and final product of electroreduction of oxide forms of metal (VI) depend on the acid-base properties of the medium. By setting the latter, it is possible to control the electrode process.

References

1. O. Medvezhynska; A. Omelchuk; Ukr. Chem. J., 2023, 89(11), 3-34. https://doi.org/10.33609/2708-129X.89.11.2023.3-34

2. M. Erdogan; I. Karakaya; Metall. Mater. Trans. B, 2010, 41, 798-804. https://doi.org/10.1007/s11663-010-9374-4

3. D. Tang; W. Xiao; H. Yin; L. Tian; D. Wang; J. Electrochem. Soc., 2012, 159, E139. https://doi.org/10.1149/2.113206jes

4. V. Malyshev; A. Gab; A.M. Popescu; V. Constantin; Chem. Res. Chin. Univ., 2013, 29, 771-775. https://doi.org/10.1007/s40242-013-3003-0

5. V. Malyshev; 2011, Mater. Sci., 47(3), 345-354. https://doi.org/10.1007/s11003-011-9402-9

6. N.B. Sun; Y.C. Zhang; F. Jiang; S.T. Lang; M. Xia; Fusion Eng. Des., 2014, 89(11) 2529-2533. https://doi.org/10.1016/j.fusengdes.2014.05.027

7. V. Malyshev; A. Gab; D. Shakhnin; C. Donath; E.I. Neacsu; A.M. Popescu; V. Constantin; Rev. Chim., 2018, 69(9), 2411-2415. https://doi.org/10.37358/RC.18.9.6544

8. A. Gab; V. Malyshev; D. Shakhnin; A.M. Popescu; V. Constantin; Studia UBB Chemia, 2024, 69(1), 35-50. https://doi.org/10.24193/subbchem.2024.1.03

9. Y.H. Liu; Y.C. Zhang; Q.Z. Liu, X.L. Li; F. Jiang; Fusion Eng. Des., 2012, 87(11), 1861-1865. https://doi.org/10.1016/j.fusengdes.2012.09.003

10. V. Malyshev; A. Gab; A.M. Popescu; V. Constantin; Rev. Chim., 2011, 62(11), 1128-1130. https://doi.org/10.37358/Rev.Chim.1949

11. V. Malyshev; A. Gab; A. Survila; C. Donath; E.I. Neacsu; A.M. Popescu; V. Constantin; Rev. Chim., 2019, 70(3), 871-874. https://doi.org/10.37358/RC.19.3.7023

12. M. Mann; S.E. Shter; G.M. Reisner; G.S. Gideon; J. Mater. Sci., 2007, 42, 1010-1018. https://doi.org/10.1007/s10853-006-1384-x

13. V. Malyshev; H. Kushkhov; V. Shapoval; J. Appl. Electrochem., 2002, 32, 573-579. https://doi.org/10.1023/A:1016544524468

14. V. Malyshev; A. Gab; D. Shakhnin; A.M. Popescu; V. Constantin; Rev. Roum. Chim., 2010, 55(4), 233-238.

15. V. Malyshev; D. Shakhnin; A. Gab; I. Astrelin; L. Molotovska; V. Soare; C. Donath; E.I. Neacsu; V. Constantin; A.M. Popescu; Rev. Chim., 2016, 67(12), 2490-2500. https://doi.org/10.37358/Rev.Chim.1949

16. V. Malyshev; A. Gab; D. Shakhnin; C. Donath; E.I. Neacsu; A.M. Popescu; V. Constantin; Rev. Chim., 2018, 69(9), 2411-2415. https://doi.org/10.37358/RC.18.9.6544

17. V.L. Cherginets; Electrochim. Acta, 1997, 42(10), 1507-1514. https://doi.org/10.1016/S0013-4686(96)00308-8

18. V.L. Cherginets; Oxoacidity: Reactions of Oxo-compounds in Ionic Solvents. Elsevier Science, 2005. ISBN: 978-0-444-51782-1

19. V.A. Onischenko; V.V. Soloviev; L.A. Chernenko; V.V. Malyshev; S.N. Bondus; Materialwisse. Werkst., 2014, 45(11), 1030-1038. https://doi.org/10.1002/mawe.201400222

20. V.V. Malyshev; V.V. Soloviev; L.A. Chernenko; V.N. Rozhko; Materialwiss. Werkst., 2015, 46(1), 5-9. https://doi.org/10.1002/mawe.201400331

21. NIST-JANAF, in: J.M.W. Chase; Ed., Thermochemical Tables

22. fourth ed., Proceedings of the American Chemical Society and the

23. American Institute of Physics, New York, NY, 1999.

24. C.E. Lucke; Handbook of Thermodynamic Tables and Diagrams. Forgotten Books. 2020. ISBN:‎ 978-0484660105

25. G. Inzelt; A. Lewenstam; F. Scholz; Eds., Handbook of Reference Electrodes. Heidelberg: Springer Berlin. 2013. ISBN: 978-3-642-44873-7

26. NIST-JANAF Thermochemical Tables. Malcolm W. Chase Jr., Ed. Anal. Chem., 1999, 71(5), 218A. 1952 р. https://doi.org/10.1021/ac991732g

27. C.E. Lucke; Handbook of Thermodynamic Tables and Diagrams. Forgotten Books, 2018. 256 p. ISBN:‎ 978-0484660105

28. S. Somia; Handbook of Advanced Ceramics. Materials, Applications, Processing, and Properties. Academic Press, 2013. ISBN: 978-0-12-385469-8

29. S.Y. Kwon; R.J. Hill; I.H. Jung; A model for multicomponent diffusion in oxide melts. CALPHAD 72, 102246, 2021. https://doi.org/10.1016/j.calphad.2020.102246

Downloads

Published

2025-12-16

How to Cite

MALYSHEV, V., GAB, A., POPESCU, A.-M., & CONSTANTIN, V. (2025). STUDY OF ELECTROCHEMICAL BEHAVIOR OF VI-B GROUP METAL OXIDES IN TUNGSTATE MELT. Studia Universitatis Babeș-Bolyai Chemia, 70(4), 41–55. https://doi.org/10.24193/subbchem.2025.4.03

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.