ANTIMICROBIAL ACTIVITY OF GRAPHENE OXIDE-COATED POLYPROPYLENE SURFACES

Authors

  • Lucian Cristian POP Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Babes-Bolyai University, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania; Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, 30 Fântânele str., RO-400294, Cluj-Napoca, Romania. https://orcid.org/0000-0002-1778-9226
  • Lucian BAIA Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, 30 Fântânele str., RO-400294, Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogălniceanu str., RO-400084 Cluj-Napoca, Romania; Interdisciplinary Research Institute on Bio-Nano-Sciences, Nanostructured Materials and Bio-Nano-Interfaces Center, Babes-Bolyai University, 42 T. Laurian str., RO-400271, Cluj-Napoca, Romania. https://orcid.org/0000-0003-3196-4868
  • Dan VODNAR Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur str., RO-400372, Cluj-Napoca, Romania. https://orcid.org/0000-0001-5407-8071
  • Rodica UNGUR Department of Medical Rehabilitation, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Louis Pasteur str., RO-400349 Cluj-Napoca, Romania.
  • Lucian BARBU TUDORAN Electron Microcopy Center, Faculty of Biology and Geology, Babes-Bolyai University, 1 M. Kogălniceanu str., RO-400084 Cluj-Napoca, Romania; Integrated Electron Microscopy Laboratory, National Research and Development Institute for Isotopic and Molecular Technologies, 67-103 Donat str., RO-400293 Cluj-Napoca, Romania. https://orcid.org/0000-0003-0360-016X
  • Monica BAIA Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, 30 Fântânele str., RO-400294, Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogălniceanu str., RO-400084 Cluj-Napoca, Romania. https://orcid.org/0000-0001-6820-2491
  • Klara MAGYARI Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, 30 Fântânele str., RO-400294, Cluj-Napoca, Romania; Interdisciplinary Research Institute on Bio-Nano-Sciences, Nanostructured Materials and Bio-Nano-Interfaces Center, Babes-Bolyai University, 42 T. Laurian str., RO-400271, Cluj-Napoca, Romania. https://orcid.org/0000-0003-1770-8454
  • Liviu Cosmin COTET Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Babes-Bolyai University, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania; Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, 30 Fântânele str., RO-400294, Cluj-Napoca, Romania. https://orcid.org/0000-0001-5306-2414
  • Gabriel BARTA Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur str., RO-400372, Cluj-Napoca, Romania https://orcid.org/0000-0001-5501-2744
  • Virginia DANCIU Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Babes-Bolyai University, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania; Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, 30 Fântânele str., RO-400294, Cluj-Napoca, Romania. *Corresponding author: virginia.danciu@ubbcluj.ro https://orcid.org/0000-0003-2479-5330

DOI:

https://doi.org/10.24193/subbchem.2022.1.18

Keywords:

graphene materials; polymer; composite; bacterial adherence, antimicrobial activity.

Abstract

Due to its optical, chemical and electronic properties, graphene oxide (GO), among others subtypes of graphene-based materials, has been broadly studied over the past decade. Thanks to its contact-based antimicrobial activity GO represents a good candidate for the construction of materials with antimicrobial properties. Thus, GO’s capability to interact with microbes delivers a prospect to improve textiles designed for usage as personal protective equipment. This paper presents the results concerning the obtain of the GO-impregnated SFM-1 polypropylene membrane, its morpho-structure and antimicrobial activity and adherence on two gram-negative bacteria (E. coli, S. thyphimurium), a gram-positive bacterium (S. aureus) and a yeast (C. albicans). The investigations on the GO-impregnated polypropylene membrane, through Raman spectroscopy, Scanning and Transmission electron microscopy (SEM, TEM), Energy Dispersive X-Ray Analysis (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) suggested the successful polypropylene impregnation with GO. The antibacterial tests have shown that all but one of the microorganisms (S. typhimurium) displayed to be susceptible to the antimicrobial activity of the GO material. Bacterial adhesion was also checked to simulate their affinity for the polypropylene surface immediately after impregnation, in this case the best results were observed on the S. aureus strains.

References

Health Organization, 2017, 1–28

A. Al-Jumaili, S. Alancherry, K. Bazaka, M. V. Jacob, Materials (Basel), 2017, 10, 1–26

B. L. Dasari, J. M. Nouri, D. Brabazon, S. Naher, Energy, 2017, 140, 766–778

K. S. Novoselov, et al., Nature, 2012, 490, 192–200

A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, L.Sun, Nano Mater. Sci. 2019, 1, 31–47

M. S. Junior, M. C. Terence, J. A. G. Carrió, J. Nano Res., 2016, 38, 96–100

N. I. Zaaba, et al. Procedia Eng., 2017, 184, 469–477

H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, Sci. Rep., 2016, 6, 1–7

A. Romero, M. P. Lavin-Lopez, L. Sanchez-Silva, J. L.Valverde, A. Paton-Carrero, Mater. Chem. Phys., 2018, 203, 284–292

G. Santamaría-Juárez, et al., Mater. Res. Express, 2019, 6, 125631

L. Richtera, et al., Key Engineering Materials, 2014, 592–593, 374–377

X. Zou, L. Zhang, Z. Wang, Y.Luo, J. Am. Chem. Soc., 2016, 138, 2064–2077

Y. Zhang, et al., Nanotechnology, 2014, 25 (13), 135301

F. Perreault, A. F. De Faria, S. Nejati, M.Elimelech, ACS Nano, 2015, 9, 7226–7236

V. T. H. Pham, et al., ACS Nano, 2015, 9, 8458–8467

J. D. Mangadlao, et al., Chem. Commun., 2015, 51, 2886–2889

Y. Li, et al., Proc. Natl. Acad. Sci. U.S.A., 2013, 110, 12295–12300

S. Liu, et al., ACS Nano, 2011, 5, 6971–6980

J. D. West, L. J. Marnett, Chem. Res. Toxicol., 2006, 19, 173–194

J. Li, et al., Sci. Rep., 2014, 4, 4359

I. E. Mejías Carpio, C. M. Santos, X. Wei, D. F. Rodrigues, Nanoscale, 2012, 4, 4746–4756

X. Lu, et al., Proc. Natl. Acad. Sci. U. S. A., 2017, 114, E9793–E9801

C. Lu, Z. Lu, Z. Li, C. K. Y. Leung, Constr. Build. Mater., 2016, 120, 457–464

S. Gurunathan, J. W. Han, A. Abdal Dayem, V. Eppakayala, J. H. Kim, Int. J. Nanomedicine, 2012, 7, 5901–5914

V. C. Sanchez, A. Jachak, R. H. Hurt, A. B. Kane, Chem. Res. Toxicol., 2012, 25, 15–34

O. Guzdemir, A. A. Ogale, Fibers, 2019, 7 (10), 83

M. T. H. Aunkor, I. M. Mahbubul, R. Saidur, H. S. C. Metselaar, RSC Adv., 2016, 6, 27807–27825

A. C. Ferrari, D. M. Basko, Nat. Nanotechnol., 2013, 8, 235–246

L. G. Cançado, et al. Nano Lett., 2011, 11, 3190–3196

S. Pei, H. M. Cheng, Carbon N. Y., 2012, 50, 3210–3228

C. A. Stackhouse, S. Yan, L. Wang, K. Kisslinger, R. Tappero, A. R. Head, K. R. Tallman, E. S. Takeuchi, D. C. Bock, K. J. Takeuchi, A. C. Marschilok, Applied Materials & Interfaces 2021, 13 (40), 47996–48008

L. C. Cotet, K. Magyari, M. Todea, M. C. Dudescu, V. Danciu, L. Baia, J. Mater. Chem. A, 2017, 5, 2132–2142

C. Akarsu, Ö. Madenli, E. Ü. Deveci, Environmental Science and Pollution Research, 2021, 28, 47517–47527

J. V. Gulmine, P. R. Janissek, H. M. Heise, L. Akcelrud, Polymer Testing, 2002, 21, 557–563

T. A. Aragaw, B. A. Mekonnen, Environ. Syst. Res., 2021, 10:8

N. Dasgupta, C. Ramalingam, Environ. Chem. Lett. 2016, 14, 477–485

H. Kita, H. Nikaido, J. Bacteriol., 1973, 113, 672–679

M. Caroff, A. Novikov, LPS Structure, Function, and Heterogeneity, in Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems, K. L. Williams, Springer, Cham., 2019, Chapter 3, 53-93

L. Izzo, S. Matrella, M. Mella, G. Benvenuto, G. Vigliotta, ACS Appl. Mater. Interfaces, 2019, 11, 15332–15343

T. Arasoğlu, et al., Turkish J. Biol., 2017, 41, 127–140

D. Sun, et al., J. Nanoparticle Res., 2016, 18, 1–21

L. Gabrielyan, H. Badalyan, V. Gevorgyan, A. Trchounian, Sci. Rep., 2020, 10, 1–12

K. E. Watkins, M. Unnikrishnan, Adv. Appl. Microbiol., 2020, 112, 105-141

M. M. Konai, B. Bhattacharjee, S. Ghosh, J. Haldar, Biomacromolecules, 2018, 19, 1888–1917

C. Tsui, E. F. Kong, M. A. Jabra-Rizk, Pathog. Dis., 2016, 74, ftw018

R. A. Calderone, W. A. Fonzi, Trends Microbiol., 2001, 9, 327–335

D. do Nascimento, et al., Sci. Rep., 2020, 10, 1–14

C. Kumpitsch, K. Koskinen, V. Schöpf, C. Moissl-Eichinger, BMC Biol., 2019, 17, 1–20

K. Szabo, Z. Diaconeasa, A. Catoi, D. C.Vodnar, Antioxidants, 2019, 8, 1–11

M. Stroe, et al., Molecules, 2020, 25, 1–11

M. P. Weinstein, J. B. Patel, C.-A. Burnhman, B. L. Zimmer, Approval CDM-A.; M07 Methods dilution Antimicrob. Susceptibility Tests Bact. That Grow Aerob., 2018, 91

B. E. Ștefănescu, et al., Antioxidants, 2020, 9(6), 495

https://users.aber.ac.uk/hlr/mpbb/index_files/Page299.html

J. Tanner, P. K. Vallittu, E. A. Söderling, J. Biomed. Mater. Res., 2000, 49, 250–256.

Downloads

Published

2022-03-30

How to Cite

POP, L. C., BAIA, L., VODNAR, D., UNGUR, R., BARBU TUDORAN, L., BAIA, M., … DANCIU, V. (2022). ANTIMICROBIAL ACTIVITY OF GRAPHENE OXIDE-COATED POLYPROPYLENE SURFACES. Studia Universitatis Babeș-Bolyai Chemia, 67(1), 281–296. https://doi.org/10.24193/subbchem.2022.1.18

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.