ANTIMICROBIAL ACTIVITY OF GRAPHENE OXIDE-COATED POLYPROPYLENE SURFACES
DOI:
https://doi.org/10.24193/subbchem.2022.1.18Keywords:
graphene materials; polymer; composite; bacterial adherence, antimicrobial activity.Abstract
Due to its optical, chemical and electronic properties, graphene oxide (GO), among others subtypes of graphene-based materials, has been broadly studied over the past decade. Thanks to its contact-based antimicrobial activity GO represents a good candidate for the construction of materials with antimicrobial properties. Thus, GO’s capability to interact with microbes delivers a prospect to improve textiles designed for usage as personal protective equipment. This paper presents the results concerning the obtain of the GO-impregnated SFM-1 polypropylene membrane, its morpho-structure and antimicrobial activity and adherence on two gram-negative bacteria (E. coli, S. thyphimurium), a gram-positive bacterium (S. aureus) and a yeast (C. albicans). The investigations on the GO-impregnated polypropylene membrane, through Raman spectroscopy, Scanning and Transmission electron microscopy (SEM, TEM), Energy Dispersive X-Ray Analysis (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) suggested the successful polypropylene impregnation with GO. The antibacterial tests have shown that all but one of the microorganisms (S. typhimurium) displayed to be susceptible to the antimicrobial activity of the GO material. Bacterial adhesion was also checked to simulate their affinity for the polypropylene surface immediately after impregnation, in this case the best results were observed on the S. aureus strains.
References
Health Organization, 2017, 1–28
A. Al-Jumaili, S. Alancherry, K. Bazaka, M. V. Jacob, Materials (Basel), 2017, 10, 1–26
B. L. Dasari, J. M. Nouri, D. Brabazon, S. Naher, Energy, 2017, 140, 766–778
K. S. Novoselov, et al., Nature, 2012, 490, 192–200
A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, L.Sun, Nano Mater. Sci. 2019, 1, 31–47
M. S. Junior, M. C. Terence, J. A. G. Carrió, J. Nano Res., 2016, 38, 96–100
N. I. Zaaba, et al. Procedia Eng., 2017, 184, 469–477
H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, Sci. Rep., 2016, 6, 1–7
A. Romero, M. P. Lavin-Lopez, L. Sanchez-Silva, J. L.Valverde, A. Paton-Carrero, Mater. Chem. Phys., 2018, 203, 284–292
G. Santamaría-Juárez, et al., Mater. Res. Express, 2019, 6, 125631
L. Richtera, et al., Key Engineering Materials, 2014, 592–593, 374–377
X. Zou, L. Zhang, Z. Wang, Y.Luo, J. Am. Chem. Soc., 2016, 138, 2064–2077
Y. Zhang, et al., Nanotechnology, 2014, 25 (13), 135301
F. Perreault, A. F. De Faria, S. Nejati, M.Elimelech, ACS Nano, 2015, 9, 7226–7236
V. T. H. Pham, et al., ACS Nano, 2015, 9, 8458–8467
J. D. Mangadlao, et al., Chem. Commun., 2015, 51, 2886–2889
Y. Li, et al., Proc. Natl. Acad. Sci. U.S.A., 2013, 110, 12295–12300
S. Liu, et al., ACS Nano, 2011, 5, 6971–6980
J. D. West, L. J. Marnett, Chem. Res. Toxicol., 2006, 19, 173–194
J. Li, et al., Sci. Rep., 2014, 4, 4359
I. E. Mejías Carpio, C. M. Santos, X. Wei, D. F. Rodrigues, Nanoscale, 2012, 4, 4746–4756
X. Lu, et al., Proc. Natl. Acad. Sci. U. S. A., 2017, 114, E9793–E9801
C. Lu, Z. Lu, Z. Li, C. K. Y. Leung, Constr. Build. Mater., 2016, 120, 457–464
S. Gurunathan, J. W. Han, A. Abdal Dayem, V. Eppakayala, J. H. Kim, Int. J. Nanomedicine, 2012, 7, 5901–5914
V. C. Sanchez, A. Jachak, R. H. Hurt, A. B. Kane, Chem. Res. Toxicol., 2012, 25, 15–34
O. Guzdemir, A. A. Ogale, Fibers, 2019, 7 (10), 83
M. T. H. Aunkor, I. M. Mahbubul, R. Saidur, H. S. C. Metselaar, RSC Adv., 2016, 6, 27807–27825
A. C. Ferrari, D. M. Basko, Nat. Nanotechnol., 2013, 8, 235–246
L. G. Cançado, et al. Nano Lett., 2011, 11, 3190–3196
S. Pei, H. M. Cheng, Carbon N. Y., 2012, 50, 3210–3228
C. A. Stackhouse, S. Yan, L. Wang, K. Kisslinger, R. Tappero, A. R. Head, K. R. Tallman, E. S. Takeuchi, D. C. Bock, K. J. Takeuchi, A. C. Marschilok, Applied Materials & Interfaces 2021, 13 (40), 47996–48008
L. C. Cotet, K. Magyari, M. Todea, M. C. Dudescu, V. Danciu, L. Baia, J. Mater. Chem. A, 2017, 5, 2132–2142
C. Akarsu, Ö. Madenli, E. Ü. Deveci, Environmental Science and Pollution Research, 2021, 28, 47517–47527
J. V. Gulmine, P. R. Janissek, H. M. Heise, L. Akcelrud, Polymer Testing, 2002, 21, 557–563
T. A. Aragaw, B. A. Mekonnen, Environ. Syst. Res., 2021, 10:8
N. Dasgupta, C. Ramalingam, Environ. Chem. Lett. 2016, 14, 477–485
H. Kita, H. Nikaido, J. Bacteriol., 1973, 113, 672–679
M. Caroff, A. Novikov, LPS Structure, Function, and Heterogeneity, in Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems, K. L. Williams, Springer, Cham., 2019, Chapter 3, 53-93
L. Izzo, S. Matrella, M. Mella, G. Benvenuto, G. Vigliotta, ACS Appl. Mater. Interfaces, 2019, 11, 15332–15343
T. Arasoğlu, et al., Turkish J. Biol., 2017, 41, 127–140
D. Sun, et al., J. Nanoparticle Res., 2016, 18, 1–21
L. Gabrielyan, H. Badalyan, V. Gevorgyan, A. Trchounian, Sci. Rep., 2020, 10, 1–12
K. E. Watkins, M. Unnikrishnan, Adv. Appl. Microbiol., 2020, 112, 105-141
M. M. Konai, B. Bhattacharjee, S. Ghosh, J. Haldar, Biomacromolecules, 2018, 19, 1888–1917
C. Tsui, E. F. Kong, M. A. Jabra-Rizk, Pathog. Dis., 2016, 74, ftw018
R. A. Calderone, W. A. Fonzi, Trends Microbiol., 2001, 9, 327–335
D. do Nascimento, et al., Sci. Rep., 2020, 10, 1–14
C. Kumpitsch, K. Koskinen, V. Schöpf, C. Moissl-Eichinger, BMC Biol., 2019, 17, 1–20
K. Szabo, Z. Diaconeasa, A. Catoi, D. C.Vodnar, Antioxidants, 2019, 8, 1–11
M. Stroe, et al., Molecules, 2020, 25, 1–11
M. P. Weinstein, J. B. Patel, C.-A. Burnhman, B. L. Zimmer, Approval CDM-A.; M07 Methods dilution Antimicrob. Susceptibility Tests Bact. That Grow Aerob., 2018, 91
B. E. Ștefănescu, et al., Antioxidants, 2020, 9(6), 495
https://users.aber.ac.uk/hlr/mpbb/index_files/Page299.html
J. Tanner, P. K. Vallittu, E. A. Söderling, J. Biomed. Mater. Res., 2000, 49, 250–256.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.