NOVEL COMPOSITE BASED ON ZIRCONIA AND GRAPHITE. FIRST RESULTS OF APPLICATION FOR SYNTHETIC DYES REMOVAL
DOI:
https://doi.org/10.24193/subbchem.2022.2.02Keywords:
Composite, Zirconia, Graphite, Methylene blue, Reactive blue 19, Sorption, Photocatalysis, UV degradation.Abstract
In this research composite based on zirconia and graphite was synthesized using the sol-gel method. Aim of this research is to activate and increase the photocatalytic activity of ZrO2 by combining with graphite-based material. Our results show that we obtained material that can remove both cationic and anionic dyes by sorption and photocatalytic processes. Obtained composite is very effective in sorption of RB19 with up to 100% removal. Photocatalytic activity of composite is higher than pristine GO and goes up to 100% for RB19 degradation and about 50% degradation of MB. These results are promising and present an excellent base for further research.
References
B. Lellis; C. Z. Fávaro-Polonio; J. A. Pamphile; J. C. Polonio; Biotechnol. Res. Innov., 2019, 3, 275-290.
S. Y. Mak; D. H. Chen; Dyes Pigm., 2004, 61, 93-98.
M. Rafatullah; O. Sulaiman; R. Hashim; A. Ahmad; J. Hazard. Mater., 2010, 177, 70-80.
D. Ghosh; K. G. Bhattacharyya; Appl. Clay Sci., 2002, 20, 295-300.
N. K. Nga; N. T. T. Chau; P. H. Viet; J. Sci.: Adv. Mater. Dev., 2020, 5, 65-72.
A. H. Jawad; A. S. Abdulhameed; N. N. Abd Malek; Z. A. Alothman; Int. J. Biol. Macromol., 2020, 164, 4218-4230.
S. T. Yang; S. Chen; Y. Chang; A. Cao; Y. Liu; H. Wang; J. Colloid Interface Sci., 2011, 359, 24-29.
B. Manu; S. Chaudhari; Bioresour. Technol., 2002, 82, 225-231.
M. Inagaki; T. Imai; T. Yoshikawa; B. Tryba; Appl. Catal. B: Environ., 2004, 51, 247-254.
Y. Min; K. Zhang; W. Zhao; F. Zheng; Y. Chen; Y. Zhang; Chem. Eng. J., 2012, 193, 203-210.
N. Zaghbani; A. Hafiane; M. Dhahbi; Sep. Purif. Technol., 2007, 55, 117-124.
A. Dąbrowski; Adv. Colloid Interface Sci., 2001, 93, 135-224.
G. Crini; Bioresour. Technol., 2006, 97, 1061-1085.
K. Krishnamoorthy; R. Mohan; S. J. Kim; Appl. Phys. Lett., 2011, 98, 244101.
M. N. Chong; B. Jin; C. W. Chow; C. Saint; Water Res., 2010, 44, 2997-3027.
A. T. Smith; A. M. LaChance; S. Zeng, B. Liu; L. Sun; Nano Materials Science, 2019, 1, 31-47.
C. K. Chua; M. Pumera; Chem. Soc. Rev., 2014, 43, 291-312.
Z. Wang; J. Liu; W. Wang; H. Chen; Z. Liu; Q. Yu; H. Zeng; L. Sun; Chem. Commun., 2013, 49, 10835-10837.
X. Y. Wang; A. Narita; K. Müllen; Nat. Rev. Chem., 2017, 2, 1-10.
W. S. Hummers Jr; R. E. Offeman; J. Am. Chem. Soc., 1958, 80, 1339-1339.
L. C. Pop; G. Barta; L. C. Cotet; K. Magyari; M. Baia; L. B. Tudoran; R. Ungur; D. Vodnar; L. Baia; V. Danciu; Stud. Univ. Babes-Bolyai Chem., 2022, 67, 281-296.
L. Wang; J. Ding; Y. Chai; Q. Liu; J. Ren; X. Liu; W. L. Dai; Dalton Trans., 2015, 44, 11223-11234.
P. S. Chauhan; R. Kant; A. Rai; A. Gupta; S. Bhattacharya; Mater. Sci. Semicond. Process., 2019, 89, 6-17.
X. Luo; C. Wang; L. Wang; F. Deng; S. Luo; X. Tu; C: Au; Chem. Eng. J., 2013, 220, 98-106.
H. Di; Z. Yu; Y. Ma; C. Zhang; F. Li; L. Lv; Y. Pan; H. Shi; Y. He; J. Taiwan Inst. Chem. Eng., 2016, 67, 511-520.
G.I. Titelman; V. Gelman; S. Bron; R.L. Khalfin; Y. Cohen; H. Bianco-Peled; Carbon, 2005, 43, 641-649.
J. Lai; S. Zhou; X. Liu; Y. Yang; J. Lei; Q. Xu; D. Yin; Catal. Lett., 2019, 149, 2749-2757.
A. Lecloux; J. P. Pirard; J. Colloid Interface Sci., 1979, 70, 265-281.
G. Horvath; K. Kawazoe; J. Chem. Eng. Japan, 1983, 16, 470-475.
M. Thommes; K. Kaneko; A. V. Neimark; J. P. Olivier; F. Rodriguey-Reinoso; J. Rouquerol; K. S. W. Sing; Pure Appl. Chem., 2015, 87, 1051-1069.
M. Kostić; S. Najdanović; N. Velinov; M. Radović Vučić; M. Petrović; J. Mitrović; A. Bojić; Environ. Technol. Innov., 2022, 26, 102358.
Y. Bulut; H. Aydin; Desalination, 2006, 194, 259-267.
C. Raji; T. S. Anirudhan; Indian J. Chem. Technol., 1997, 4, 157-162.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.