Statistical Korovkin and Voronovskaya type theorem for the Ces´aro second-order operator of fuzzy numbers

Authors

  • Naim L. BRAHA Research Institute Ilirias, www.ilirias.com, pn, Janina, Ferizaj, 70000, Kosova Department of Mathematics and Computer Sciences, University of Prishtina, Avenue Mother Teresa, No-4, Prishtine, 10000, Kosova, e-mail: nbraha@yahoo.com https://orcid.org/0000-0001-8335-1129
  • Valdete LOKU University of Applied Sciences Ferizaj, Rr. Rexhep Bislimi, Pn. Ferizaj, 70000, Kosova, e-mail: valdeteloku@gmail.com https://orcid.org/0000-0003-4977-5037

DOI:

https://doi.org/10.24193/subbmath.2020.4.06

Keywords:

Ces´aro second order summability method, statistical convergence, Korovkin type theorem, rate of convergence, Voronovskaya type theorem.

Abstract

In this paper we define the Ces´aro second-order summability method for fuzzy numbers and prove Korovkin type theorem, then as the application of it, we prove the rate of convergence. In the last section, we prove the kind of Voronovskaya type theorem and give some concluding remarks related to the obtained results.

Mathematics Subject Classification (2010): 40A10, 40C10, 40E05, 40A05, 40G99, 26E50.

References

Altin, Y., Mursaleen, M., Altinok, H., Statistical summability (C, 1) for sequences of fuzzy real numbers and a Tauberian theorem, Journal of Intelligent and Fuzzy Systems, 21(2010), 379-384.

Anastassiou, G.A., Rate of convergence of fuzzy neural network operators, univariate case, J. Fuzzy Math., 10(2002), no. 3, 755-780.

Anastassiou, G.A., On basic fuzzy Korovkin theory, Stud. Univ. Babe¸s-Bolyai Math., 50(2005), 3-10.

Anastassiou, G.A., Duman, O., Statistical fuzzy approximation by fuzzy positive linear operators, Computers and Mathematics with Applications, 55(2008), 573-580.

Bede, B., Gal, S.G., Almost periodic fuzzy number valued functions, Fuzzy Sets and Systems, 147(2004), 385-403.

Braha, N.L., Geometric properties of the second-order Cesa´ro spaces, Banach J. Math. Anal., 10(2016), no. 1, 1-14.

Braha, N.L., Some weighted equi-statistical convergence and Korovkin type-theorem, Results Math., 70(2016), no. 3-4, 433-446.

Braha, N.L., Loku, V., Srivastava, H.M., Λ2-weighted statistical convergence and Korovkin and Voronovskaya type theorems, Appl. Math. Comput., 266(2015), 675-686.

Braha, N.L., Srivastava, H.M., Mohiuddine, S.A., A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean, Appl. Math. Comput., 228(2014), 162-169.

Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.

Kadak, U., Braha, N.L., Srivastava, H.M., Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput., 302(2017), 80-96.

Loku, V., Braha, N.L., Some weighted statistical convergence and Korovkin type-theorem, J. Inequal. Spec. Funct., 8(2017), no. 3, 139-150.

Matloka, M., Sequence of fuzzy numbers, BUSEFAL, 28(1986), 28-37.

Nanda, S., On sequence of fuzzy numbers, Fuzzy Sets and Systems, 33(1989), 123-126.

Puri, M.L., Ralescu, D.A., Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), no. 2, 552-558.

Zadeh, L.A., Fuzzy sets, Information and Control, 8(1965), 338-353.

Downloads

Published

2020-11-28

How to Cite

BRAHA, N. L., & LOKU, V. (2020). Statistical Korovkin and Voronovskaya type theorem for the Ces´aro second-order operator of fuzzy numbers. Studia Universitatis Babeș-Bolyai Mathematica, 65(4), 561–574. https://doi.org/10.24193/subbmath.2020.4.06

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.