Existence and topological structure of solution sets for φ-Laplacian impulsive stochastic differential systems

Authors

  • Tayeb BLOUHI Faculty of Mathematics and Computer Science, Department of Mathematics University of Science and Technology Mohamed-Boudiaf El Mnaouar BP 1505, Bir El Djir 31000, Oran, Algeria, e-mail: blouhitayeb@yahoo.com
  • Mohamed FERHAT Faculty of Mathematics and Computer Science, Department of Mathematics University of Science and Technology Mohamed-Boudiaf El Mnaouar BP 1505, Bir El Djir 31000, Oran, Algeria, e-mail: ferhat22@hotmail.fr

DOI:

https://doi.org/10.24193/subbmath.2018.4.07

Keywords:

φ-Laplacian stochastic differential equation, Wiener process, impulsive differential equations, matrix convergent to zero, generalized Banach space, fixed point.

Abstract

In this article, we present results on the existence and the topological structure of the solution set for initial-value problems relating to the first-order impulsive differential equation with infinite Brownian motions are proved. The approach is based on nonlinear alternative Leray-Schauder type theorem in generalized Banach spaces.

Mathematics Subject Classification (2010): 34A37, 34K45, 60H99, 60H05, 65C30, 47H10.

References

Bainov, D.D., Lakshmikantham, V., Simeonov, P.S., Theory of Impulsive Differential Equations, World Sci., Singapore, 1989.

Bainov, D.D., Simeonov, P.S., Integral Inequalities and Applications, in: Mathematics and its Applications, vol. 57, Kluwer Academic Publishers, Dordrecht, 1992.

Benchohra, M., Henderson, J., Ntouyas, S.K., Impulsive differential equations and inclusions, Hindawi. Pub. Cor, New York, 2(2006).

Bharucha-Reid, A.T., Random Integral Equations, Academic Press, New York, 1972. [5] Burkholder, D.L., Martingale transforms, Ann. Math. Statist., 37(1966), 1494-1504.

Burkholder, D.L., Gundy, R.F., Extrapolation and interpolation of quasi-linear operators on martingales, Acta. Math., 124(1970), 249-304.

Da Prato, G., Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992.

Davis, B., On the integrability of the martingale square function, Israel. J. Math., 8(1970), 187-190.

Gard, T.C., Introduction to Stochastic Differential Equations, Marcel Dekker, New York, 1988.

Gikhman, I.I., Skorokhod, A., Stochastic Differential Equations, Springer-Verlag, 1972. [11] Graef, J.R., Henderson, J., Ouahab, A., Impulsive differential inclusions. A fixed point approach, De Gruy. Ser. Nonlinear. Anal. Appl 20. Berlin, de Gruyter, 2013.

Guilan, C., Kai, H., On a type of stochastic differential equations driven by countably many Brownian motions, J. Funct. Anal., 203(2003), 262-285.

Halanay, A., Wexler, D., Teoria calitativa˘ a sistemelor cu impulsuri, (Romanian), Editura Academiei Rep. Soc. Romania, Bucharest, 1968.

Henderson, J., Ouahab, A., Youcefi, S., Existence and topological structure of solution sets for φ-Laplacian impulsive differential equations, Elec. J. Diff. Equ., 56(2012), 1-16.

Malliavin, P., The canonic diffusion above the diffeomorphism group of the circle, C.R. Acad. Sci. Paris S´er. I. Math., 329(1999), 325-329.

Mao, X., Stochastic Differential Equations and Applications, Horwood, Chichester, 1997. [17] Millar, P., Warwick Martingale integrals, Trans. Amer. Math. Soc., 133(1968), 145-166. [18] Milman, V.D., Myshkis, A.A., On the stability of motion in the presence of impulses, (Russian), Sib. Math. J., 1(1960), 233–237.

Novikov, A.A., The moment inequalities for stochastic integrals, (Russian), Teor. Verojatnost. i Primenen., 16(1971), 548-551.

Øksendal, B., Stochastic Differential Equations: An Introduction with Applications, Fourth Edition, Springer-Verlag, Berlin, 1995.

Perov, A.I., On the Cauchy problem for a system of ordinary differential equations, (Russian), Pviblizhen. Met. Reshen. Diff. Uvavn, 2(1964), 115-134.

Precup, R., Methods. Nonlinear Integral Equations, Kluwer, Dordrecht, 2000.

Revuz, D., Yor, M., Continuous Martingales and Brownian Motion, Springer, Third Edition, 1999.

Rus, I.A., The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9(2008), 541-559.

Sakthivel, R., Luo, J., Asymptotic stability of nonlinear impulsive stochastic differential equations, Statist. Probab. Lett., 79(2009), 1219-1223.

Samoilenko, A.M., Perestyuk, N.A., Impulsive Differential Equations, World Sci., Singapore, 1995.

Sobczyk, H., Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic Publishers, London, 1991.

Tsokos, C.P., Padgett, W.J., Random Integral Equations with Applications to Life Sciences and Engineering, Academic Press, New York, 1974.

Viorel, A., Contributions to the Study of Nonlinear Evolution Equations, Ph.D. Thesis, Babe¸s-Bolyai Univ. Cluj-Napoca, Department of Mathematics, 2011.

Wu, S.J., Guo, X.L., Lin, S.Q., Existence and uniqueness of solutions to random impulsive differential systems, Acta. Math. Appl. Sinica, 22(2006), 595-600.

Downloads

Published

2018-12-20

How to Cite

BLOUHI, T., & FERHAT, M. (2018). Existence and topological structure of solution sets for φ-Laplacian impulsive stochastic differential systems. Studia Universitatis Babeș-Bolyai Mathematica, 63(4), 503–523. https://doi.org/10.24193/subbmath.2018.4.07

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.