HYDROTHERMAL CO-LIQUEFACTION OF PROSOPIS JULIFLORA AND POLYPROPYLENE IN CONTINUOUS HIGH PRESSURE SCREW REACTOR: A COMPUTATIONAL AND EXPERIMENTAL ANALYSIS

Authors

DOI:

https://doi.org/10.24193/subbchem.2025.3.17

Keywords:

High-pressure screw reactor, Hydrothermal Co-liquefaction, Prosopis juliflora, Polypropylene, heat transfer, energy conversion

Abstract

In advancement over batch reactors for biomass conversion, a continuous high-pressure screw reactor was designed to perform hydrothermal co-liquefaction (co-HTL) under a range of conditions: temperatures of 555–595 K, water-to-biomass ratios (W/B) of 6.3–8.3, and feed rates of 0.005–0.0085 kg/s. Prosopis juliflora (PJ) and polypropylene (PP) were used in biomass ratios of 1:4, 1:1, and 4:1. Computational Fluid Dynamics (CFD) using ANSYS Fluent was employed to analyze heat transfer between the reaction chamber and slurry biomass. For 595 K, 8:3 W/B, and 0.007 kg/s, the simulation predicted a maximum temperature of 589.3 K and pressure of 22.1 MPa, showing a 1.3 MPa deviation from experiments due to low-density particles and higher process temperatures. The simulated heat transfer coefficient was 6001 W/m2K, matching experimental data with 94.6% accuracy. Under these conditions, energy recovery reached 70.8%, with biochar and biocrude yields of 34.2% and 48.7%, respectively. A synergistic effect in biocrude and biochar production was observed at a 4:1 PJ:PP ratio, independent of temperature. GC-MS analysis confirmed major aromatic hydrocarbons, including 1-[(E)-2-(4-chlorophenyl)ethenyl]-3,5-dimethoxybenzene, 2-methoxyphenol (C7H8O2), and phenol (C6H5OH). The optimal conditions of 595 K, 8:3 W/B, and 0.007 kg/s are recommended for maximum energy recovery and efficient heat transfer.

References

1. J. Yang, Q. He and L. Yang, Appl. Energ., 2019, 250: 926-45.

2. F. Cheng, J.M. Jarvis, J. Yu, U. Jena, N. Nirmalakhandan, T.M. Schaub and C.E. Brewer, Bioresource Technol., 2019, 294: 122184-93.

3. I.A. Basar, H. Liu, H. Carrere, E. Trably and C. Eskicioglu, Green Chem., 2021, 23(4): 1404-46.

4. R.F. Beims, Y. Hu, H. Shui and C. Xu, Biomass Bioenerg., 2020, 135: 105510-24.

5. A. Aierzhati, J. Watson, B. Si, M. Stablein, T. Wang and Y. Zhang, Energ. Convers. Man.-X, 2021, 10(1): 100076-86.

6. C. Jazrawi, P. Biller, A.B. Ross, A. Montoya, T. Maschmeyer and B.S. Haynes, Algal Res., 2013, 2(3): 268-77.

7. J. Ni, L. Qian, Y. Wang, B. Zhang, H. Gu, Y. Hu and Q. Wang, Fuel, 2022, 327: 125135-49.

8. M. Tabatabaei, M. Aghbashlo, M. Dehhaghi, H.K.S. Panahi, A. Mollahosseini, M. Hosseini and M.M. Soufiyan, Prog. Energy Combust. Sci., 2019, 74(1): 239-303.

9. D.C. Elliott, T.R. Hart, G.G. Neuenschwander, L.J. Rotness, G. Roesijadi, A.H. Zacher and J.K. Magnuson, ACS Sustain. Chem. Eng., 2013, 2(2): 207-15.

10. I.M. Sintamarean, I.F. Grigoras, C.U. Jensen, S.S. Toor, T.H. Pedersen and L.A. Rosendahl, Biomass Convers. Biorefin., 2017, 7(4): 425-35.

11. D.W.F. Brilman, N. Drabik and M. Wądrzyk, Biomass Convers. Biorefin., 2017, 7(4): 445-54.

12. A.R. Suesse, G.A. Norton and J. van Leeuwen, Energ. Fuel., 2016, 30(9): 7379-86.

13. J.L. Wagner, C.D. Le, V.P. Ting and C.J. Chuck, Fuel Process. Technol., 2017, 165: 102-11.

14. W.T. Chen, M.A. Haque, T. Lu, A. Aierzhati and G. Reimonn, Curr. Opin. Environ. Sci. Health, 2020, 14: 63-73.

15. K. Anastasakis, P. Biller, R. Madsen, M. Glasius and I. Johannsen, Energies, 2018, 11(10): 2695-718.

16. T.H. Pedersen, I.F. Grigoras, J. Hoffmann, S.S. Toor, I.M. Daraban, C.U. Jensen, S.B. Iversen, R.B. Madsen, M. Glasius, K.R. Arturi, R.P. Nielsen, E.G. Søgaard and L.A. Rosendahl, Appl. Energ., 2016, 162: 1034-41.

17. C.U. Jensen, J.K. Rodriguez Guerrero, S. Karatzos, G. Olofsson and S.B. Iversen, Biomass Convers. Biorefin., 2017, 7(4): 495-509.

18. X. Shi, F. Ronsse, J. Roegiers and J.G. Pieters, Renew. Energ., 2019, 143: 1465-76.

19. X. Shi, F. Ronsse, R. Nachenius and J.G. Pieters, Renew. Energ., 2019, 143: 1477-87.

20. S. Aramideh, Q. Xiong, S.-C. Kong and R.C. Brown, Fuel, 2015, 156(1): 234-42.

21. S. Jalalifar, R. Abbassi, V. Garaniya, F. Salehi, S. Papari, K. Hawboldt and V. Strezov, Fuel, 2020, 273: 117782-96.

22. F. Qi and M.M. Wright, Powder Technol., 2018, 335: 18-34.

23. C. Sheng and J.L.T. Azevedo, Biomass Bioenerg., 2005, 28(5): 499-507.

24. Q. Liu, R. Xu, C. Yan, L. Han, H. Lei, R. Ruan and X. Zhang, Bioresour. Technol., 2021, 340: 125630-40.

25. B. Li, T. Yang, R. Li and X. Kai, Energy, 2020, 200: 117524-33.

26. H. Li, Z. Zhu, J. Lu, J. Watson, D. Kong, K. Wang, Y. Zhang and Z. Liu, Fuel, 2020, 280: 118605-18.

27. A. Mathanker, D. Pudasainee, A. Kumar and R. Gupta, Fuel, 2020, 271: 117534-44.

28. D. Mahesh, S. Ahmad, R. Kumar, S.R. Chakravarthy and R. Vinu, Bioresour. Technol., 2021, 339: 125537-47.

29. J.S. dos Passos, S. Chiaberge and P. Biller, Energ. Fuel, 2021, 35(13): 10630-40.

30. Z. Wang, Y. Chen, G. Chen, T. Sun, M. Zhang, Q. Wang, M. Wu, S. Guo, S. Yang, T. Lei, K.G. Burra and A.K. Gupta, J. Energy Resour. Technol., 2023, 145(8): 1-8.

31. X. Tao and C.A. Infante Ferreira, Int. J. Heat Mass Tran., 2019, 135: 996-1012.

32. S. Mukundan, J.L. Wagner, P.K. Annamalai, D.S. Ravindran, G.K. Krishnapillai and J. Beltramini, Fuel Process Technol., 2022, 238: 107523-32.

33. C.D. Venkatachalam, M. Sengottian, S.R. Ravichandran, K. Subramaniyan and P. Kalappan Thangamuthu, Period. Polytech. Chem. Eng., 2020, 65(1): 105-15.

34. M.S. Seshasayee and P.E. Savage, Appl. Energ., 2020, 278: 115673-85.

35. J.S. dos Passos, M. Glasius and P. Biller, Process Saf. Environ., 2020, 139: 371-79.

36. W.-T. Chen, K. Jin and N.-H. Linda Wang, ACS Sustain. Chem. Eng., 2019, 7(4): 3749-58.

37. S. Hongthong, S. Raikova, H.S. Leese and C.J. Chuck, Waste Manage., 2020, 102: 351-61.

38. N. Li, H. Liu, Z. Cheng, B. Yan, G. Chen and S. Wang, J. Hazard Mater., 2022, 424: 127460-72.

39. J.A. Onwudili and P.T. Williams, J. Clean. Prod., 2023, 430: 139733-46.

40. X. Zhang, L. Zhang and A. Li, Bioresource Technol., 2019, 294: 122113-22.

Downloads

Published

2025-09-24

How to Cite

VENKATACHALAM, C. D., BHUVANESHWARAN, P., SENGOTTIAN, M., & RAVICHANDRAN, S. R. (2025). HYDROTHERMAL CO-LIQUEFACTION OF PROSOPIS JULIFLORA AND POLYPROPYLENE IN CONTINUOUS HIGH PRESSURE SCREW REACTOR: A COMPUTATIONAL AND EXPERIMENTAL ANALYSIS. Studia Universitatis Babeș-Bolyai Chemia, 70(3), 243–263. https://doi.org/10.24193/subbchem.2025.3.17

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.