INVESTIGATION OF THE POTENTIAL OF ENVIRONMENTALLY FRIENDLY NON-IONIC SURFACTANTS FOR EOR
DOI:
https://doi.org/10.24193/subbchem.2025.3.13Keywords:
enhanced oil recovery, sustainability, environmentally friendly, non-ionic surfactantAbstract
This study investigates the use of non-ionic surfactants synthesized from sunflower oil as sustainable alternatives for enhanced oil recovery (EOR). The bio-based surfactants were evaluated alongside commercial products through physicochemical and performance tests. The results revealed that the renewable formulations demonstrated excellent oil displacement and emulsification capacity, comparable to or exceeding that of conventional surfactants. These findings highlight the potential of plant-derived surfactants to reduce the environmental impact of EOR processes without compromising efficiency.
References
1. A. O. Gbadamosi; R. Junin; M. A. Manan; Int. Nano Lett., 2019, 9, 171–202.
2. W.-L. Kong; B.-B. Zhang; M. Issakhov; M. Gabdullin; Pet. Sci., 2022, 19(4).
3. B. N. Barman; V. L. Cebolla; A. K. Mehrotra; C. T. Mansfield; Pet. Coal, 2001, 73, 2791–2804.
4. A. Agi; R. Junin; M. F. Syamsul; A. S. Chong; A. Gbadamosi; Petroleum, 2019, 5(1), 42–51.
5. A. Gbadamosi; S. Patil; M. S. Kamal; A. A. Adewunmi; A. S. Yusuff; A. Agi; J. Oseh; Polymers, 2022, 14, 1433.
6. O. Tavakkoli; H. Kamyab; M. Shariati; A. M. Mohamed; R. Junin; Fuel, 2022, 312.
7. A. Gurgel; M. C. Moura; T. N. D. Castro; E. L. Barros Neto; A. A. Dantas Neto; Braz. J. Pet. Gas, 2008, 2.
8. A. Samanta; A. Bera; K. Ojha; J. Pet. Explor. Prod. Technol., 2012, 2, 67–74.
9. National Center for Biotechnology Information; PubChem Compound Summary for CID 16213030, 2,4,7,9-Tetramethyl-5-decyne-4,7-diol ethoxylate; https://pubchem.ncbi.nlm.nih.gov/compound/2_4_7_9-Tetramethyl-5-decyne-4_7-diol-ethoxylate; accessed May 19, 2025.
10. E. Sansonetti; B. Andersons; I. Andersone; Mater. Sci. Eng., 2016, 111.
11. R. Krishnan; R. Sprycha; Colloids Surf., 1999, 149, 355–366.
12. M. D. Mampaey; Liquid Absorption into Porous Media; Master’s Thesis, Eindhoven University of Technology, Netherlands, 2022.
13. J. Perkowski; W. Jozwiak; L. Kos; P. Stajszczyk; Fibres Text. East. Eur., 2006, 59(5), 114–119.
14. K. Kato; P. Walde; N. Koine; S. Ichikawa; T. Ishikawa; R. Nagahama; T. Ishihara; T. Tsujii; M. Shudou; Y. Omokawa; T. Kuroiwa; Langmuir, 2008, 24(19), 10762–10770.
15. N. Pal; N. Kumar; A. Verma; K. Ojha; A. Mandal; Energy Fuels, 2018, 32, 11344–11361.
16. M. Hartyányi; R. Nagy; L. Bartha; S. Puskás; Energies, 2024, 17, 2438.
17. M. Hartyányi; R. Nagy; R. Bejczi; L. Bartha; S. Puskás; Energy Sci. Eng., 2025.
18. M. Hartyányi; R. Bejczi; R. Nagy; N. Demcsák; L. Bartha; S. Puskás; MethodsX, 2024, 12, 102671.
19. R. Nagy; R. Sallai; L. Bartha; Á. Vágó; Adv. Chem. Eng. Sci., 2015, 5, 121–128.
20. A. V. Molnár-Kiss; R. Nagy; Waste Biomass Valor., 2024, 15, 917–921.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.