INVESTIGATION OF ANTHRAQUINONE CONTENTS, DNA CLEAVAGE, DNA BINDING, CYTOTOXIC AND ANTIOXIDANT ACTIVITIES OF XANTHORIA PARIETINA SAMPLES

Authors

  • Nilgün GÜLER Department of Chemistry Technology, Mustafa Cıkrıkcıoğlu Vocational School, Kayseri University, Kayseri, Turkey https://orcid.org/0000-0003-3022-4876
  • Emine KILIÇKAYA SELVİ Department of Chemistry Technology, Mustafa Cıkrıkcıoğlu Vocational School, Kayseri University, Kayseri, Turkey. *Corresponding author: emineselvi@kayseri.edu.tr https://orcid.org/0000-0003-0291-5362

DOI:

https://doi.org/10.24193/subbchem.2025.2.06

Keywords:

Xanthoria parietina, parietin, DNA cleavage, cytotoxicity, colon cancer, GC/MS

Abstract

In this study, Xanthoria parietina samples were collected from different regions of Türkiye like Yozgat (Xp3), Izmit (Xp14), and Kütahya (Xp20). Anthracenedione, anthraquinone (parietin) contents of the lichens were determined quantitatively by GC-MS and spectrophotometric methods. The interaction of lichen extracts with pBR322 DNA and CT-DNA was examined by performing an agarose gel electrophoresis method. The cell proliferative activities of Xanthoria parietina samples were tested against the colon cancer cell line (DLD-1) by MTT assay. As a results of the GC-MS and spectrophotometric analysis, the highest and the lowest parietin contents were found for Xp20 and Xp14 extracts, respectively. These results were supported by those of the DNA cleavage, binding, and toxicity studies. The Xp14 sample can be considered as a drug that could be a new approach to cancer treatment, as it has the lowest polyaromatic hydrocarbon content and is not toxic for the cell.

References

1. M. Bačkorová; R. Jendželovský; M. Kello; M. Bačkor; J. Mikeš; P. Fedoročko; In Vitro Toxicol., 2014, 26(3), 462-468. https://doi.org/10.1016/j.tiv.2012.01.017

2. F. Chavant; A. Boucher; R. Boisselier; S. Deheul; D. Debruyne; ‘Thérapie, 2015, 70(2), 179-89. 10.2515/therapie/2015001

3. D. Koche; R. Shirsat; M. Kawale; Hislopia Journal, 2016, 9(1/2),1-11.

4. J. Plsíkova; J. Stepankova; J. Kasparkova; V. Brabec; M. Backor; M. Kozurkova; In Vitro Toxicol., 2014, 28(2),182-186. https://doi.org/10.1016/j.tiv.2013.11.003

5. M. Sxena; S. Jyoti; R. Nema; S. Dharmendra; G. Abhishek; JPP., 2013, 1(6),168-182.

6. T.H. Nash; Cambridge, UK: Cambridge University Press, 2008, 301-316.

7. V. Cardile; A.C.E. Graziano; R. Avola; M. Piovano; A. Russo; Chem. Biol. Interact., 2017, 263, 36-45. https://doi.org/10.1016/j.cbi.2016.12.007

8. A. Shcherbakova; A. A. Strömstedt; U. Göransson; O. Gnezdilov; A. Turanov; D. Boldbaatar; D. Kochkin; G. U. Merzenich; A. Koptina; World J Microbiol Biotechnol.,2021, 37,129.

9. T.T. Nguyen; S.Yoon; Y. Yang; H.B. Lee; S. Oh; M.H. Jeong; et al. PLoS One, 2014, 31,9 (10),e111575.

10. A. Dinçsoy; D. Cansaran-Duman; (2017). Turk. J. Biol.. 2017, 41. 10.3906/biy-1609-40.

11. K. Ingolfsdottir; Phytochem, 2002, 61, 729-36.

12. M. Sekerli; K. Nil; C.D. Demet; Turk. Hij. Den. Biyol. Derg., 2017, 74, 95-102. 10.5505/TurkHijyen.2016.24650.

13. N. Singh; D. Nambiar; R.K. Kale; R.P. Singh; Nutr. Cancer., 2013, 65, 36-43.

14. M. Bačkorová; R. Jendželovský; M. Kello; Toxicol. in Vitro., 2012, 26, 462-8.

15. E.R. Correche´; M. Carrasco; F. Giannini; Acta Farm. Bonaerense., 2002, 21, 273-78.

16. M.M. Kosani´c; B.R. Rankovi´c; T. P. Stanojkovi´c; J. Sci. Food Agric., 2012, 92(9), 1909-1916. http://dx.doi.org/10.1002/jsfa.5559

17. L. Nybakken; K.A. Solhaug; W. Bilger; Y. Gauslaa; Oecologia, 2004, 140, 211–216. https://doi.org/10.1007/s00442-004-1583-6

18. B. Rankovi´c; M. Kosani´c; T. Stanojkovi´c; P. Vasiljevi´c; N. Manojlovi´c; ‘Int. J. Mol. Sci., 2012, 13, 14707–14722. http://dx.doi.org/10.3390/ijms131114707

19. A. Sweidan; M. Chollet-Krugler; A. Sauvager; P. van de Weghe; A. Chokr; M. Bonnaure-Mallet, et al., Fitoterapia, 2017, 121,164–9. https://doi.org/10.1016/j.fitote.2017.07.011

20. V.M. Thadhani; V. Karunaratne; Oxid. Med. Cell. Longev., 2017, 1-10. https://doi.org/10.1155/2017/2079697

21. S. Ali; H.N. Hameed; JAPS, 2019, 29 (3), 881-888.

22. A. Cornejo; F. Salgado; J. Caballero; R. Vargas; M. Simirgiotis; C. Areche; Int. J. Mol. Sci., 2016, 17(8), 1303. https://doi.org/10.3390/ijms17081303

23. J. Kumar; P. Dhar; A.B. Tayade; D. Gupta; O.P. Chaurasia; D.K. Upreti et al., Plos One, 2014, 9(6),98696. https://doi.org/10.1371/journal.pone.0098696

24. M. Mükemre; G. Zengin; R.S. Türker; A. Aslan; A. Dalar; IJSM, 2021, 8(4),376-388. https://doi.org/10.21448/ijsm.994427

25. L. Comini; F.E.M. Vieyra; R.A. Mignone; P.L. Paez; M.L. Mugas; B.S. Konigheim et al., PPS, 2017, 16, 201-210. https://doi.org/10.1039/c6pp00334f

26. Y. Gauslaa; E.M. Ustvedt; PPS, 2003, 2,424-432. https://doi.org/10.1039/b212532c

27. K. Solhaug; Y. Gauslaa; Oecologia, 1996, 108,412-418. https://doi.org/10.1007/BF00333715

28. Lawrey, J.D. Biological role of lichen substances. Byrologist, 1986, 89, 111–122. http://dx.doi.org/10.2307/3242751.

29. A. Basile; D. Rigano; S. Loppi; A. Di Santi; A. Nebbioso; S. Sorbo; et al., Int. J. Mol. Sci., 2015, 16(4), 7861-7875. https://doi.org/10.3390/ijms16047861

30. A.K. Demirkaya; G. Gündoğdu; Y. Dodurga; M. Seçme; K. Gündoğdu; J. Vet. Sci., 2019, 14(1), 29-37. https://doi.org/10.17094/ataunivbd.387311

31. Y. Dodurga; M. Seçme; L. Elmas; G. Gündoğdu; A. Çekin; N.S. Günel; Pam.Tıp Derg., 2024, 17, 243-253.

32. T. Varol; M. Ertuğrul; Fresenius Environ. Bull., 2015, 24, 3436-3444.

33. A.M. Abdallah; U.A. Muhammed; A. Ghazala; D. Alice Abu; M. A. Ahmed, S. Ahmed; E. Konrad; W. Matthias; S. Jens; B. Udo; Biomater Adv., 2022, 134,112543. https://doi.org/10.1016/j.msec.2021.112543.

34. S. Chopra et al; Breast cancer Medicine, 2020

35. M. Bačkorová; M. Bačkor; J. Mikeš; R. Jendželovský; P. Fedoročko; Toxicol. in Vitro,2011, 25(1), 37-44. doi: 10.1016/j.tiv.2010.09.004.

36. C.A.H. Bigger; I. Pontén; J.E. Page; A. Dipple; Mutat. Res. Fund. Mol. M., 2000, 450(1-2), 75-93. https://doi.org/10.1016/S0027-5107(00)00017-8

37. B.M. Sahoo; B.V.V. Ravi Kumar; B.K. Banik; P. Borah; Curr. Org. Synth., 2020, 17(8), 625-640. https://doi.org/10.2174/1570179417666200713182441

38. A.A. Stec; K.E. Dickens; M. Salden; F.E. Hewitt; D.P. Watts; P.E. Houldsworth; et al., Sci. Rep., 2018, 8, 2476. https://doi.org/10.1038/s41598-018-20616-6

39. C. Boyles; S.J.S. Sobeck; Food Chem., 2020, 315,126249.

40. Y. Ito; N. Harikai; K. Ishizuki; K. Shinomiya; N. Sugimoto; H. Akiyama; Chem. Pharm. Bull., 2017, 65(9), 883-887. https://doi.org/10.1248/cpb.c17-00404

41. L. Malinauskiene; M. Bruze; K. Ryberg; E. Zimerson; M. Isaksson; Contact Dermatitis, 2013, 68(2), 65-75. https://doi.org/10.1111/cod.12001

42. A. Narayanankutty; A. Nair; S.P. Illam; A. Upaganlawar; A.C. Raghavamenon; Nutr.Cancer,2021,73(5), 809-816. https://doi.org/10.1080/01635581.2020.1778745

43. Z. Bıyıklıoğlu; H. Baş; Y. Altun; C.Ö. Yalçın; B. Barut; Appl. Organomet. Chem., 2022, 32, 1-10.

44. Z.E. Hillman; J.M. Tanski; A. Roberts; Acta crystallogr., C Struct. Chem., 2020, 76, 639-646. https://doi.org/10.1107/S2053229620008128

45. M. Temina; D.O. Levitsky; V.M. Dembitsky; Rec. Nat. Prod., 2010, 4(1),79-86.

46. M. Ben Salah; C. Aouadhi; A. Khadhri; Bioprocess Biosyst. Eng., 2021, 44, 2257–2268.

47. A. Torres; I. Dor; J. Rotem; M. Srebnik; V.M. Dembitsky; Eur. J. Biochem., 2003, 270(10), 2120-2125. https://doi.org/10.1046/j.1432-1033.2003.03556.x

48. D. Dias; S. Urban; Nat. Prod. Commun., 2009, 4(7), 959-964. https://doi.org/10.1177/1934578X0900400717

49. D. Gandhi; K. Umamahesh; S. Sathiyaraj; G. Suriyakala; R. Velmurugan; D.A. Al Farraj; et al.,J. Infect. Public Health, 2022, 15(4), 491-497. https://doi.org/10.1016/j.jiph.2021.10.014

50. V.L. Singleton; J.A. Rossi; AJEV, 1965, 16(3),144–158. http://doi.org/citeulike-article-id:7170825

51. M. Marcucci; R. Woisky; A. Salatino; Mensagem Doce, 1998, 46,3-9.

52. N. Farajzadeh; N.G. Kuşçulu; H.Y. Yenilmez; D. Bahar; Z.A. Bayır; New J. Chem., 2022a, 46, 19863-19873. https://doi.org/10.1039/D2NJ02891C

53. N. Farajzadeh; N.G. Kuşçulu; H.Y. Yenilmez; D. Bahar; Z. Altuntaş Bayır; Dalton Trans., 2022b, 51, 7539-7550. https://doi.org/10.1039/D2DT01033J

54. N. Farajzadeh; H.Y. Yenilmez; D. Bahar; N. Güler Kuşçulu; E. Kılıçkaya Selvi; Z. Altuntaş Bayır; Dalton Trans., 2023, 52, 7009-7020. https://doi.org/10.1039/D3DT00615H

55. E. Yabaş; S. Şahin-Bölükbaşı; Z.D. Şahin-İnan; J. Porphyr. Phthalocyanines, 2022, 26, 65–77.

Downloads

Published

2025-06-20

How to Cite

GÜLER, N., & KILIÇKAYA SELVİ, E. (2025). INVESTIGATION OF ANTHRAQUINONE CONTENTS, DNA CLEAVAGE, DNA BINDING, CYTOTOXIC AND ANTIOXIDANT ACTIVITIES OF XANTHORIA PARIETINA SAMPLES. Studia Universitatis Babeș-Bolyai Chemia, 70(2), 81–96. https://doi.org/10.24193/subbchem.2025.2.06

Issue

Section

Articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.