EVALUATION OF FERROCENYLMETHYLNUCLEOBASES DERIVATIVES INTERACTING WITH DNA: INSIGHTS FROM ELECTROCHEMICAL, SPECTROSCOPIC, DFT CALCULATION, MOLECULAR DOCKING AND MOLECULAR DYNAMIC SIMULATIONS

Authors

  • Mohammed Larbi Ben AMOR University of El Oued, Faculty of exact Sciences, Department of Chemistry, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria; University of El Oued, Faculty of Technology, Department of Process Engineering and Petrochemical, P.O. Box 789, El Oued 39000, Algeria
  • Elhafnaoui LANEZ University of El Oued, Faculty of exact Sciences, Department of Chemistry, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria; University of El Oued, Faculty of Biology, Department of Cellular and Molecular Biology, 39000, El Oued, Algeria. yahia-bekkar@univ-eloued.dz https://orcid.org/0000-0002-6543-2547
  • Yahia BEKKAR University of El Oued, Faculty of exact Sciences, Department of Chemistry, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria https://orcid.org/0000-0001-5816-2043
  • Aicha ADAIKA University of El Oued, Faculty of exact Sciences, Department of Chemistry, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria https://orcid.org/0000-0002-7829-709X
  • Touhami LANEZ University of El Oued, Faculty of exact Sciences, Department of Chemistry, VTRS Laboratory, B.P.789, 39000, El Oued, Algeria https://orcid.org/0000-0002-3978-7635
  • Kaouther NESBA University of El Oued, Faculty of Arts and Languages, Department of English Language, 39000, El Oued, Algeria https://orcid.org/0000-0001-6611-8413
  • Lazhar BECHKI Kasdi Merbah University, Faculty of Mathematics and Material Sciences, Department of Chemistry, 30000, Ouargla, Algeria; Kasdi Merbah University, VPRS Laboratory, Department of Chemistry, Faculty of Mathematics and Material Sciences, 30000 Ouargla, Algeria https://orcid.org/0000-0001-9152-3760

DOI:

https://doi.org/10.24193/subbchem.2025.1.08

Keywords:

Ferrocene Nucleobase, Molecular dynamic simulation, Molecular docking, DFT

Abstract

This study investigates the binding of ferrocenylmethyl nucleobase derivatives to DNA through electrostatic interactions, employing a combination of experimental and theoretical approaches to elucidate binding mechanisms and explore their potential for DNA targeting. UV–Vis spectroscopy and cyclic voltammetry (CV) were used to evaluate binding affinities and structural alterations in DNA. The derivatives exhibited DNA interactions, evidenced by negative formal potential shifts in CV data. Binding constants and free binding energies derived from docking simulations aligned well with UV–Vis and CV analyses. Additionally, voltammetric data provided insights into the binding site size. Molecular docking simulations confirmed the critical role of electrostatic interactions in the binding of FcMeCy, FcMeTh, and (FcMe)2Ad to DNA. Molecular dynamics simulations further revealed the stability of DNA-ligand complexes, with RMSD and radius of gyration (Rg) analyses indicating compact and stable DNA structures, emphasizing the robustness of these interactions for therapeutic applications. Theoretical investigations, including geometry optimization, Mulliken charge distribution, molecular electrostatic potential (MEP) analysis, and HOMO-LUMO surface analysis using density functional theory (B3LYP/aug-cc-pVTZ/6-311++G(d,p)), offered deeper insights into structural properties, reactive sites, and chemical reactivity. These results provide a comprehensive understanding of the interaction mechanisms and potential applications of these derivatives.

References

1. Y. Sun, Y. Liu, X. Ma, H. Hu, Int J Mol Sci, 2021, 22, 6923.

2. J.F. Alhmoud, J.F. Woolley, A.-E. Al Moustafa, M.I. Mallei, 2021, 309–339.

3. R. Mehandi, R. Arif, M. Rana, S. Ahmedi, R. Sultana, M.S. Khan, M. Maseet, M. Khanuja, N. Manzoor, N. Nishat, J Mol Struct, 2021, 1245, 131248.

4. M. Rana, M.I. Faizan, S.H. Dar, T. Ahmad, Rahisuddin, ACS Omega, 2022, 7, 22639–22656.

5. E.J. Anthony, E.M. Bolitho, H.E. Bridgewater, O.W.L. Carter, J.M. Donnelly, C. Imberti, E.C. Lant, F. Lermyte, R.J. Needham, M. Palau, Chem Sci, 2020, 11, 12888–12917.

6. J. Zegers, M. Peters, B. Albada, 2023, 28, 117–138.

7. Q. Cheng, T. Zhou, Q. Xia, X. Lu, H. Xu, M. Hu, S. Jing, RSC Adv, 2021, 11, 25477–25483.

8. L. Tabrizi, T.L.A. Nguyen, H.D.T. Tran, M.Q. Pham, D.Q. Dao, J Chem Inf Model, 2020, 60, 6185–6203.

9. C. Ornelas, 2011, 35, 1973–1985.

10. N. Zegheb, C. Boubekri, T. Lanez, E. Lanez, T.T. Küçükkılınç, E. Öz, A. Khennoufa, S. Khamouli, S. Belaidi, Anticancer Agents Med Chem, 2021, 22, 1426–1437.

11. A. Khennoufa, L. Bechki, T. Lanez, E. Lanez, N. Zegheb, J Mol Struct, 2021, 1224, 129052.

12. G. Gasser, I. Ott, N. Metzler-Nolte, J Med Chem, 2011, 54, 3–25.

13. R. Wang, H. Chen, W. Yan, M. Zheng, T. Zhang, Y. Zhang, Eur J Med Chem, 2020, 190, 112109.

14. A.M. Abu-Dief, M.A. Said, O. Elhady, N. Alahmadi, S. Alzahrani, T.N.A. Eskander, M.A.E.A.A. Ali, Inorg Chem Commun, 2023, 155, 110955.

15. S. Masood, M. Jamshaid, M.N. Zafar, E.U. Mughal, M. Ashfaq, M.N. Tahir, J Mol Struct, 2024, 1295, 136571.

16. M. Sumi, N.T. Nevaditha, B.S. Kumari, J Mol Struct, 2023, 1272, 134091.

17. A.M. Abu-Dief, R.M. El-Khatib, T. El‐Dabea, A. Abdou, F.S. Aljohani, E.S. Al-Farraj, I.O. Barnawi, M.A.E.A.A. Ali, J Mol Liq, 2023, 386, 122353.

18. A.M. Abu‐Dief, M.A. Said, O. Elhady, H.A. Al‐Abdulkarim, S. Alzahrani, T.N.A. Eskander, M.A.E.A.A.A. El‐Remaily, Appl Organomet Chem, 2023, 37, e7162.

19. M. Hanane, T. Lanez, I. Zafar, M.S. Afghan, N. Zegheb, J Coord Chem, 2023, 76, 1984–1998.

20. H. Mouada, T. Lanez, I. Zafar, J Organomet Chem, 2024, 1007, 123026.

21. N. Li, Y. Ma, C. Yang, L. Guo, X. Yang, Biophys Chem, 2005, 116, 199–205.

22. M.T. Carter, M. Rodriguez, A.J. Bard, J Am Chem Soc, 1989, 111, 8901–8911.

23. P. Şenel, S. Agar, M. Yurtsever, A. Gölcü, J Pharm Biomed Anal, 2023, 115746.

24. A. Shah, M. Zaheer, R. Qureshi, Z. Akhter, M.F. Nazar, Spectrochim Acta A Mol Biomol Spectrosc, 2010, 75, 1082–1087.

25. X. Chu, G.-L. Shen, J.-H. Jiang, T.-F. Kang, B. Xiong, R.-Q. Yu, Anal Chim Acta, 1998, 373, 29–38.

26. C.M.A. Brett, O. Brett, 1993, 67, 444.

27. E. Lanez, M. Saidi, T. Lanez, 2023, 44, 542–558.

28. M.A. Neelakantan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar, M. Sankaranarayana Pillai, Spectrochim Acta A Mol Biomol Spectrosc, 2008, 71, 1599–1609.

29. G.-C. Zhao, J.-J. Zhu, J.-J. Zhang, H.-Y. Chen, Anal Chim Acta, 1999, 394, 337–344.

30. M. Aslanoglu, G. Ayne, Anal Bioanal Chem, 2004, 380, 658–663.

31. T. Sarwar, S.U. Rehman, M.A. Husain, H.M. Ishqi, M. Tabish, Int J Biol Macromol, 2015, 73, 9–16.

32. D.K. Jangir, S. Charak, R. Mehrotra, S. Kundu, J Photochem Photobiol B, 2011, 105, 143–148.

33. K. Roy, S. Kar, P. Ambure, 2015, 145, 22–29.

34. N. Shahabadi, M. Falsafi, Spectrochim Acta A Mol Biomol Spectrosc, 2014, 125, 154–159.

35. A.M. Abu-Dief, T. El‐Dabea, R.M. El-Khatib, M. Feizi-Dehnayebi, F.S. Aljohani, K. Al-Ghamdi, I.O. Barnawi, M.A.E.A.A. Ali, J Mol Liq, 2024, 399, 124422.

36. D. Suh, J.B. Chaires, Bioorg Med Chem, 1995, 3, 723–728.

37. S.Z. Moradi, A. Nowroozi, K. Sadrjavadi, S. Moradi, K. Mansouri, L. Hosseinzadeh, M. Shahlaei, Int J Biol Macromol, 2018, 114, 40–53.

38. F.A. Qais, K.M. Abdullah, M.M. Alam, I. Naseem, I. Ahmad, Int J Biol Macromol, 2017, 97, 392–402.

39. Z. Seferoğlu, M.M.A. Mahmoud, H. Ihmels, 2016, 125, 241–248.

40. M. Milusheva, M. Todorova, V. Gledacheva, I. Stefanova, M. Feizi-Dehnayebi, M. Pencheva, P. Nedialkov, Y. Tumbarski, V. Yanakieva, S. Tsoneva, 2023, 16, 1660.

41. A.S. Dorafshan Tabatabai, E. Dehghanian, H. Mansouri-Torshizi, M. Feizi-Dehnayebi, J Biomol Struct Dyn, 2024, 42, 5447–5469.

42. I.M. Khan, M. Islam, S. Shakya, N. Alam, S. Imtiaz, M.R. Islam, J Biomol Struct Dyn, 2022, 40, 12194–12208.

43. S. Shakya, I.M. Khan, B. Shakya, Y.H. Siddique, H. Varshney, S. Jyoti, J Mater Chem B, 2023, 11, 1262–1278.

44. I.M. Khan, S. Shakya, R. Akhtar, K. Alam, M. Islam, N. Alam, Bioorg Chem, 2020, 100, 103872.

45. I.M. Khan, S. Shakya, M. Islam, S. Khan, H. Najnin, Phys Chem Liquids, 2021, 59, 753–769.

46. M. Feizi-Dehnayebi, E. Dehghanian, H. Mansouri-Torshizi, J Mol Struct, 2021, 1240, 130535.

47. H. Laraoui, E. Lanez, N. Zegheb, A. Adaika, T. Lanez, M. Benkhaled, ChemistrySelect, 2023, 8, e202204512.

48. M.T. Rehman, M.F. AlAjmi, A. Hussain, Curr Pharm Des, 2021, 27, 3577–3589.

49. T. Lanez, M. Feizi-Dehnayebi, E. Lanez, J Mol Struct, 2024, 138386.

50. A. Yahiaoui, N. Benyza, A. Messai, T. Lanez, E. Lanez, 2023,.

51. E. Lanez, L. Bechki, T. Lanez, 2019, 20,.

52. E. Lanez, L. Bechki, T. Lanez, Chemistry (Easton), 2020, 14, 146–153.

53. E. Lanez, L. Bechki, T. Lanez, 2019, 13, 11–17.

54. T. Lanez, H. Benaicha, E. Lanez, M. Saidi, 2018, 39, 76–88.

55. R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, B.U. Nair, Biochem Biophys Res Commun, 2000, 271, 731–734.

56. J.A. Glasel, Biotechniques, 1995, 18, 62–63.

57. C.-S. Lu, X.-M. Ren, C.-J. Hu, H.-Z. ZHU, Q.-J. MENG, Chem Pharm Bull (Tokyo), 2001, 49, 818–821.

58. R. Bera, B.K. Sahoo, K.S. Ghosh, S. Dasgupta, Int J Biol Macromol, 2008, 42, 14–21.

59. S. Qamar, F. Perveen, Z. Akhter, S. Yousuf, M. Sultan, S.E. Ela, N. Ullah, M. Fatima, K. Fatima, U. Nazir, J Mol Struct, 2022, 1253, 132250.

60. S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry, 1992, 31, 9319–9324.

61. M. Frisch, F. Clemente, 2009, 20–44.

62. R. Dennington, T.A. Keith, J.M. Millam, 2016,.

63. N.B. Balabanov, K.A. Peterson, J Chem Phys, 2005, 123,.

64. H.M. Berman, Nucleic Acids Res, 2000, 28, 235–242.

65. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J Comput Chem, 2009, 30, 2785–2791.

66. E. Lanez, A. Kedadra, T. Lanez, A. Adaika, N. Zegheb, J Organomet Chem, 2024, 1017, 123284.

67. A. Adaika, Y. Bekkar, S. Youmbai, L. Bourougaa, E. Lanez, M.L. Ben Amor, K. Nesba, T. Lanez, L. Bechki, Appl Organomet Chem, 2025, 39,.

68. A. Yahiaoui, N. Benyza, A. Messai, T. Lanez, L. Elhafnaoui, 2024, 8, 93–102.

69. M.L. BEN AMOR, E. LANEZ, Y. Bekkar, A. ADAIKA, T. LANEZ, K. NESBA, L. BECHKI, ChemistrySelect, 2025, 10, 1–16.

70. L. Ozalp, S.S. Erdem, B. Yüce-Dursun, Ö. Mutlu, M. Özbil, Comput Biol Chem, 2018, 77, 87–96.

71. J.J.P. Stewart, J Mol Model, 2009, 15, 765–805.

72. S. Grimme, Wiley Interdiscip Rev Comput Mol Sci, 2011, 1, 211–228.

73. D.S. Biovia, 2017, 936, 240–249.

74. G. V Dhoke, C. Loderer, M.D. Davari, M. Ansorge-Schumacher, U. Schwaneberg, M. Bocola, J Comput Aided Mol Des, 2015, 29, 1057–1069.

75. O. Trott, A.J. Olson, J Comput Chem, 2010, 31, 455–461.

76. K.J. Bowers, E. Chow, H. Xu, R.O. Dror, M.P. Eastwood, B.A. Gregersen, J.L. Klepeis, I. Kolossvary, M.A. Moraes, F.D. Sacerdoti, in: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006, pp. 84-es.

77. J.L. Banks, H.S. Beard, Y. Cao, A.E. Cho, W. Damm, R. Farid, A.K. Felts, T.A. Halgren, D.T. Mainz, J.R. Maple, J Comput Chem, 2005, 26, 1752–1780.

78. A.Y. Toukmaji, J.A. Board Jr, Comput Phys Commun, 1996, 95, 73–92.

79. J. Zielkiewicz, J Chem Phys, 2005, 123,.

80. G.J. Martyna, M.L. Klein, M. Tuckerman, J Chem Phys, 1992, 97, 2635–2643.

Downloads

Published

2025-03-20

How to Cite

AMOR, M. L. B., LANEZ, E., BEKKAR, Y., ADAIKA, A., LANEZ, T., NESBA, K., & BECHKI, L. (2025). EVALUATION OF FERROCENYLMETHYLNUCLEOBASES DERIVATIVES INTERACTING WITH DNA: INSIGHTS FROM ELECTROCHEMICAL, SPECTROSCOPIC, DFT CALCULATION, MOLECULAR DOCKING AND MOLECULAR DYNAMIC SIMULATIONS. Studia Universitatis Babeș-Bolyai Chemia, 70(1), 111–132. https://doi.org/10.24193/subbchem.2025.1.08

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.