Electrospinning As a Tool for Enzyme Immobilization

Authors

  • Melinda-Emese LÁSZLÓ Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: melinda.laszlo@ubbcluj.ro
  • Matild PAP Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: matildpap@yahoo.com
  • Gabriel KATONA Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Corresponding author: gabriel.katona@ubbcluj.ro https://orcid.org/0000-0003-3508-0023

DOI:

https://doi.org/10.24193/subbchem.2024.4.06

Keywords:

CaL-B, immobilization, electrospinning, PVA, (rac)-1-phenylethanol, EKR

Abstract

Enzyme immobilization (covalent or noncovalent) on solid supports such as nanomaterials, resins or polymers can enhance the enzyme activity-, and selectivity, improving their stability. The present research is focused on the non-covalent immobilization of lipase B from Candida antarctica (CaL-B) into polyvinyl alcohol (PVA) nanofibers via electrospinning with the aim to prepare a stable and reusable biocatalyst compatible with organic reaction media. Polymer solutions of 8, 10 and 12 w/w % concentrations were used to investigate the effect of the polymer concentration on the biocatalyst’s activity. The immobilized enzyme amount was determined using the Bradford assay, while structural characterization was performed by transmission electron microscopy. The immobilized enzyme preparates were tested in the enzymatic kinetic resolution of (rac)-1-phenylethanol and its halogenated derivatives through transesterification with vinyl acetate in batch mode. The highest conversion was obtained in case of CaL-B entrapped in electrospun nanofibers prepared from 10 w/w % PVA solution (noted as 10%–PVA–CaL-B) and its high stability was confirmed in recycling experiments. It was found that after the 5th cycle the biocatalyst maintained 88% of its initial activity.

References

1. A. Frenot; I. S. Chronakis; COCIS, 2003, 8, 64–75.

2. W. J. Morton; Patent no. US 705,691, 1902.

3. J. F. Cooley; Patent no. US 745,276, 1903.

4. K. Shaefer; H. Thomas; P. Dalton; M. Moeller; Nano-Fibers for Filter Materials in Multifunctional Barriers for Flexible Structure, Springer, 1991, Chapter 7, pp.125–138.

5. A. A. Babar; N. Iqbal; X. Wang; J. Yu; B. Ding; Introduction and historical overview in Electrospinning: Nanofabrication and Applications, William Andrew, 2019, Chapter 1, pp. 3–20.

6. C. Cleeton; A. Keirouz; X. Chen; N. Radacsi; ACS Biomater. Sci. Eng., 2019, 5, 4183–4205.

7. S. Ramakrishna; K. Fujihara; W. E. Teo; T. Yong; Z. Ma; R. Ramaseshan; Mater. Today, 2006, 9, 40–50.

8. X. Zhang; R. Lv; L. Chen; R. Sun; Y. Zhang; R. Sheng; T. Du; Y. Li; Y. Qi; ACS Appl. Mater. Interfaces, 2022, 14, 12984–13000.

9. C. Z. Mosher; P. A. P. Brudnicki; Z. Gong; H. R. Childs; S. W. Lee; R. M. Antrobus; E. C. Fang; T. N. Schiros; H. H. Lu; Biofabrication, 2021, 13, 035049.

10. A. B. J. de Barbosa; C. A. de França; J. J. de S. Gouveia; G. V. Gouveia, M. M. da Costa, H. P. de Oliveira, J. Appl. Polym. Sci., 2019, 136, 47479.

11. D. Li; Q. Wang; F. Huang; Q. Wei; Electrospun nanofibers for enzyme immobilization in Electrospinning: Nanofabrication and Applications, William Andrew, 2019, Chapter 26, pp. 765–781.

12. Z. G. Wang; L. S. Wan; Z. M. Liu; X. J. Huang; Z. K. Xu; J. Mol. Catal. B Enzym., 2009, 56, 189–195.

13. M. M. Aldhahr; Y. Q. Almulaiky; R. M. El-Shishtawy; W. Al-Shawafi; A. Alngadh; R. Maghrabi; ACS Omega, 2018, 3, 6346–6350.

14. D. N. Tran; K. J. Balkus Jr.; Top. Catal., 2012, 55, 1057–1069.

15. A. Greiner; J. H. Wendorff; Angew. Chem., Int. Ed., 2007,46, 5670–5703

16. Z. Vargas-Osorio; F. Ruther; S. Chen; S. Sengupta; L. Liverani; M. Michálek; D. Galusek; A. R. Boccaccini; Biomed. Mater., 2022, 17, 045019.

17. V. Korniienko; Y. Husak; J. Radwan-Pragłowska; V. Holubnycha; Y. Samokhin; A. Yanovska; J. Varava; K. Diedkova; Ł. Janus; M. Pogorielov; Molecules,2022, 27, 3343.

18. Y. Samokhin; Y. Varava; K. Diedkova; I. Yanko; Y. Husak; J. Radwan-Pragłowska; O. Pogorielova; Ł. Janus; M. Pogorielov; V. Korniienko; J. Funct Biomater., 2023, 14, 414.

19. A. Al-Abduljabbar; I. Farooq; Polymers, 2023, 15, 65.

20. N. Rao; R. Singh; L. Bashambu; Mater. Today: Proceedings, 2021, 44, 608–614.

21. P. Adlercreutz, Chem. Soc. Rev., 2013, 42, 6406–6436.

22. M. L. E. Gutarra; L. S. M. Miranda; R. O. M. A. de Souza, Enzyme Immobilization for Organic Synthesis in Organic Synthesis Using Biocatalysis, ed. A. Goswami and J. D. Stewart, Academic Press, Amsterdam, 2016, Chapter 4, pp. 99–126.

23. R. C. Rodrigues; J. J. Virgen-Ortíz; J. C. S. dos Santos; Á. Berenguer-Murcia; A. R. Alcantara; O. Barbosa; C. Ortiz; R. Fernandez-Lafuente; Biotechnol. Adv., 2019, 37, 746–770.

24. A. F. de Almeida; C. R. F. Terrasan, C. C. Terrone; S. M. Tauk-Tornisielo; E. C. Carmona; Process Biochem., 2018, 65, 71–80.

25. L. de Abreu; R. Fernandez-Lafuente; R. C. Rodrigues; G. Volpato; M. A. Z. Ayub; J. Mol. Catal. B Enzym., 2014, 99, 51–55.

26. T. Liu; X. Wang; Q. Li; J. Wang; Y. Yan; J. Mol. Catal. B Enzym., 2011, 71, 45–50.

27. B. Stauch; S. J. Fisher; M. Cianci; JLR, 2015, 56, 2348–2358.

28. P. Nicolás; V. L. Lassalle; M. L. Ferreira; Enzyme Microb. Technol., 2017, 97, 97–103.

29. J. Cassani; H. Luna; A. Navarro-Ocaña; E. Castillo; Electron. J. Biotechnol., 2007, 10, 508–513.

30. E. M. Anderson; M. Karin; O. Kirk; Biocatal. Biotransform., 1998, 16, 181–204.

31. M. Habulin; Ž. Knez; J. Mol. Catal. B Enzym., 2009, 58, 24–28.

32. A. Idris; A. Bukhari; Biotechn. Adv., 2012, 30, 550–563.

33. L. F. Solares; R. Brieva; M. Quiros; I. Llorente; M. Bayod; V. Gotor; Tetrahedron: Asymmetry, 2004, 15, 341−345.

34. C. A. Gál; L. E. Barabás; J. H. Bartha-Vári; M. E. Moisă; D. Balogh-Weiser; L. C. Bencze; L. Poppe; C. Paizs; M. I. Toșa; React. Chem. Eng., 2021, 6, 2391–2399.

35. Q. Li; F. Fan; Y. Wang; W. Feng; P. Ji; Ind. Eng. Chem. Res., 2013, 52, 6343–6348.

36. L. C. Bencze; J. H. Bartha-Vári; G. Katona; M. I. Toşa; C. Paizs; F. D. Irimie; Bioresour. Technol., 2016, 200, 853–886.

37. E. P. Cipolatti; M. C. C. Pinto; J. M. de Robert; T. P. da Silva; T. D. C. Beralto; J. G. F. Santos Jr.; R. Fernandez-Lafuente; E. A. Manoel; J. C. C. D. S. Pinto; D. M. G. Freire; J. Appl. Polym. Sci., 2018, 135, 46727.

38. Y. Poojari; S. J. Clarson; Biocatal. Agric. Biotechnol., 2013, 2, 7–11.

39. J. Sun; Y. Jiang; L. Zhou; J. Gao; New Biotechnology, 2010, 27, 53–58.

40. X. Geng; O.-H. Kwon; J. Jang; Biomater., 2005, 26, 5427–5432.

41. K. Sun; Z. H. Li; EXPRESS Polym. Lett., 2011, 5, 342–361.

42. C. Ortiz; M. L. Ferreira; O. Barbosa; J. C. s. dos Santos; R. C. Rodriguez; Á. Berenguer-Murcia; L. E. Briand; R. Fernandez-Lafuente; Catal. Sci. Technol., 2019, 9, 2380–2420.

43. C. José; R. D. Bonetto; L. A. Gambaro; M. P. Guauque Torres; M. L. Foresti; M. L. Ferreira; J. Mol. Catal. B: Enzym., 2017, 71, 95–107.

44. C. José; L. E. Briand; React. Kinet., Mech. Catal., 2010, 99, 17–22.

45. C. G. Spelmezan; A. Bacoș; G. Katona; Studia UBB Chemia, 2023, LXVIII, 2, 53–71.

46. C. G. Spelmezan; G. Katona; L. C. Bencze; C. Paizs; M. I. Toșa; React. Chem. Eng., 2023, 8, 1109.

47. P. L. Sóti; D. Weiser; T. Vigh; Zs. K. Nagy; L. Poppe; G. Marosi; Bioprocess. Biosyst. Eng., 2015, 39, 449–459.

48. A. Goswami; J. Goswami; Tetrahedron Lett., 2005, 46, 4411–4413.

49. Electronic Supplementary Material (ESI) for C. A. Gál; L. E. Barabás; J. H. Bartha-Vári; M. E. Moisă; D. Balogh-Weiser; L. C. Bencze; L. Poppe; C. Paizs; M. I. Toșa; React. Chem. Eng., 2021.

50. C.-S. Chen; Y. Fujimoto; G. Girdaukas; C. J. Sih; J. Am. Chem. Soc., 1982, 14, 7294.

Downloads

Published

2024-12-18

How to Cite

LÁSZLÓ, M.-E., PAP, M., & KATONA, G. (2024). Electrospinning As a Tool for Enzyme Immobilization. Studia Universitatis Babeș-Bolyai Chemia, 69(4), 85–98. https://doi.org/10.24193/subbchem.2024.4.06

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.