COMPUTING THE ANTI-KEKULÉ NUMBER OF CERTAIN NANOTUBES AND NANOCONES
Keywords:
Perfect matching, Anti-Kekulé number, Nanotubes, NanoconesAbstract
Let G(V,E) be a connected graph. A set M subset of E is called a matching if no two edges in M have a common end-vertex. A matching M in G is perfect if every vertex of G is incident with an edge in M. The perfect matchings correspond to Kekulé structures which play an important role in the analysis of resonance energy and stability of hydrocarbons. The anti-Kekulé number of a graph G, denoted as ak(G), is the smallest number of edges which must be removed from a connected graph G with a perfect matching, such that the remaining graph stay connected and contains no perfect matching. In this paper, we calculate the anti-Kekulé number of TUC4C8(S)[p,q] nanotube, TUC4C8(S)[p,q] nanotori for all positive integers p, q and CNC2k-1[n] nanocones for all positive integers k and n.
References
I. Gutman, O. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
M. Randic, Chem. Rev, 2003, 103, 34.
N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.
D. Vukičević, N. Trinajstić, J. Math. Chem., 2007, 42, 575.
D. Vukičević, N. Trinajstić, J. Math. Chem., 2008, 43, 719.
D. Veljan, D. Vukičević, J. Math. Chem., 2008, 43, 243.
K. Kutnar, J. Sedlar, D. Vukičević, J. Math. Chem., 2009, 45, 431.
Q. Yang, D. Ye, H. Zhang, MATCH Commun. Math. Comput. Chem., 2012, 67, 281.
S. Tang, H. Deng, Dig. J. Nanomater. Bios., 2011, 6, 439.
A. Xavier, A. S. Shanthi, M. J. Raja, Intel. J. Pure App. Math., 2013, 86, 1019.
D. Ye, Discr. Appl. Math., 2013, 161, 2196.
M.A. Malik, S. Hayat, M. Imran, J. Comput. Theor. Nanos., accepted, in press.
M. Stefu, M. V. Diudea, MATCH Commun. Math. Comput. Chem., 2004, 50, 133.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.