ACTIVATED MULTI-WALLED CARBON NANOTUBES FOR ELECTROCHEMICAL DETECTION OF DOPAMINE IN THE PRESENCE OF ASCORBIC AND URIC ACID

Authors

  • Andrea KELLENBERGER Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Romania. Email: andrea.kellenberger@upt.ro. https://orcid.org/0000-0003-4594-8092
  • Rodica GAVRILA Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Romania. Corresponding author: plesu_nicole@yahoo.com.
  • Nicoleta PLEȘU Coriolan Dragulescu Institute of Chemistry, Timisoara, Romania. Email: plesu_nicole@yahoo.com. https://orcid.org/0000-0003-3289-8006

DOI:

https://doi.org/10.24193/subbchem.2020.4.03

Keywords:

electrochemical sensor, carbon nanotubes, dopamine, ascorbic acid, square wave voltammetry

Abstract

Electrochemical sensors have been prepared using pristine and activated multi-walled carbon nanotubes on glassy carbon electrode. The detection of dopamine in the presence of ascorbic acid was tested by square wave voltammetry and cyclic voltammetry. Best results were obtained for glassy carbon modified with activated carbon nanotubes electrodes. A linear dependence between current intensities and dopamine concentrations is found in both the absence/presence of ascorbic acid, in the range of 4-100 µM / 6-100 µM, with detection and quantification limits of 0.44 / 0.64 and 1.45 / 2.14 µM, respectively and high sensitivity. The developed electrodes also showed very good performance in separating the oxidation potentials of ascorbic acid, dopamine and uric acid, with peak potential differences of 200 and 170 mV. Dopamine detection in synthetic solutions in the presence of both ascorbic and uric acid gave recovery rates of 98%, indicating that the method is reliable.

References

L. Yang, D. Liu, J. Huang, T. You, Sensor. Actuat. B-Chem, 2014, 193, 166-172

N.D. Oko, S. Garbarino, J. Zhang, Z. Xu, M. Chaker, D. Ma, D. Guay A.C. Tavares, Electrochim. Acta, 2015, 159, 174–183.

R.T. Kennedy, C.J. Watson, W.E. Haskins, D.H. Powell, R.E Strecker, Curr. Opin. Chem. Biol., 2002, 6, 659–665.

B.J. Venton, R.M. Wightman, Anal. Chem., 2003, 75, 414A–421A.

N.G. Tsierkezosa, S.H. Othman, U. Ritter, L. Hafermann, A. Knauer, J.M. Köhler, C. Downing, E.K. McCarthy, Sensors Actuat. B-Chem., 2016, 231, 218–229.

N. Chauhan, S. Chawla, C.S. Pundir, U. Jain, Biosens. Bioelectron., 2017, 89, 377–383.

A. Ramanavicius, A. Ramanaviciene, A. Malinauskas, Electrochim. Acta 2006, 51, 6025–6037.

D. Wu, H. Li, X. Xue, H. Fan, Q. Xin, Q. Wei, Anal. Methods., 2013, 5, 1469–1473.

N. Plesu, A. Kellenberger, I. Taranu, B.O Taranu, I. Popa, I., React. Funct. Polym., 2013, 73 (5), 772-778.

X. Zhang, L.-X. Ma, Y.-C. Zhang, Electrochim. Acta, 2015, 177, 118–127.

A.K. Bhakta, R.J. Mascarenhas, O.J. D'Souza, A.K. Satpati, S. Detriche, Z. Mekhalif, J. Dalhalle, Mater. Sci. Eng. C., 2015, 57, 328–337.

E.C. Ilinoiu, F. Manea, P.A. Serra, R. Pode, Sensors, 2013, 13(6), 7296-7307.

C. Wang, J. Du, H. Wang, C. Zou, F. Jiang, P.Yang, Y. Du, Sensor. Actuat. B –Chem., 2014, 204, 302–309.

F.R. Caetano, L.B. Felippe, A.J.G. Zarbin, M.F. Bergamini, L.H. Marcolino-Junior, Sensor. Actuat. B-Chem., 2017, 243, 43–50.

I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Mod. Electron. Mater., 2016, 2, 95-105.

M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev., 2010, 110, 132–145

Q. He, J. Liu, X. Liu, G. Li, P. Deng, J. Liang, Sensors, 2018, 18, 199;

Z. Hsine, S. Bizid, R. Mlika, H. Sauriat-Dorizon, A. Haj Said, H. Korri-Youssoufi, Sensors 2020, 20, 1256;

H. Gaspar, C. Pereira, S.L.H. Rebelo, M.F.R. Pereira, J.L. Figueiredo, C. Freire, Carbon, 2011, 49, 3441–3453.

J. Armstrong, R.B. Barlow, Br. J. Pharmacol., 1976, 57, 501 – 516

R. Gusmão, M. Melle-Franco, D. Geraldo, F. Bento, M.C. Paiva, F. Proença, Electrochem. Commun., 2015, 57, 22–26.

A. Liu, M.D. Wei, I. Honma, H. Zhou, Adv. Funct. Mater., 2006, 16, 371 - 376.

L. Huang, S. Jiao, M. Li, Electrochim. Acta, 2014, 121, 233–239.

A.F. Szőke, G.L. Turdean, G. Katona, L. M. Muresan, Studia UBB Chemia, 2016, 3, 135-144.

J. Du, R. Yue, F. Ren, Z. Yao, F. Jiang, P. Yang, Y. Du, Biosens. Bioelectron., 2014, 53, 220–224.

D.C. Stefanescu A.A. Ciucu, A.A. Rabinca, M. Buleandra, A.P. Stoian, R.C. Jecan, R. Hainarosie, Rev.Chim., 2018, 69(1), 277-281.

G.-Z. Hu, D.-P. Zhang, W.-L. Wu, Z.S. Yang, Colloids Surf. B: Biointerfaces, 2008, 62, 199–205.

Downloads

Published

2020-12-30

How to Cite

KELLENBERGER, A. ., GAVRILA, R. ., & PLEȘU, N. . (2020). ACTIVATED MULTI-WALLED CARBON NANOTUBES FOR ELECTROCHEMICAL DETECTION OF DOPAMINE IN THE PRESENCE OF ASCORBIC AND URIC ACID. Studia Universitatis Babeș-Bolyai Chemia, 65(4), 35–52. https://doi.org/10.24193/subbchem.2020.4.03

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.