COMPUTING THE ANTI-KEKULÉ NUMBER OF CERTAIN NANOTUBES AND NANOCONES

Authors

  • Mehar Ali MALIK Department of Mathematics, School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan. Email: alies.camp@gmail.com. https://orcid.org/0000-0002-5666-3968
  • Muhammad IMRAN Department of Mathematics, School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan. Email: drmimranchaudhry@gcuf.edu.pk. https://orcid.org/0000-0002-6591-0991

Keywords:

Perfect matching, Anti-Kekulé number, Nanotubes, Nanocones

Abstract

Let G(V,E) be a connected graph. A set M subset of E is called a matching if no two edges in M have a common end-vertex. A matching M in G is perfect if every vertex of G is incident with an edge in M. The perfect matchings correspond to Kekulé structures which play an important role in the analysis of resonance energy and stability of hydrocarbons. The anti-Kekulé number of a graph G, denoted as ak(G), is the smallest number of edges which must be removed from a connected graph G with a perfect matching, such that the remaining graph stay connected and contains no perfect matching. In this paper, we calculate the anti-Kekulé number of TUC4C8(S)[p,q] nanotube, TUC4C8(S)[p,q] nanotori for all positive integers p, q and CNC2k-1[n] nanocones for all positive integers k and n.

References

I. Gutman, O. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.

M. Randic, Chem. Rev, 2003, 103, 34.

N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.

D. Vukičević, N. Trinajstić, J. Math. Chem., 2007, 42, 575.

D. Vukičević, N. Trinajstić, J. Math. Chem., 2008, 43, 719.

D. Veljan, D. Vukičević, J. Math. Chem., 2008, 43, 243.

K. Kutnar, J. Sedlar, D. Vukičević, J. Math. Chem., 2009, 45, 431.

Q. Yang, D. Ye, H. Zhang, MATCH Commun. Math. Comput. Chem., 2012, 67, 281.

S. Tang, H. Deng, Dig. J. Nanomater. Bios., 2011, 6, 439.

A. Xavier, A. S. Shanthi, M. J. Raja, Intel. J. Pure App. Math., 2013, 86, 1019.

D. Ye, Discr. Appl. Math., 2013, 161, 2196.

M.A. Malik, S. Hayat, M. Imran, J. Comput. Theor. Nanos., accepted, in press.

M. Stefu, M. V. Diudea, MATCH Commun. Math. Comput. Chem., 2004, 50, 133.

Downloads

Published

2015-06-30

How to Cite

MALIK, M. A. ., & IMRAN, M. . (2015). COMPUTING THE ANTI-KEKULÉ NUMBER OF CERTAIN NANOTUBES AND NANOCONES. Studia Universitatis Babeș-Bolyai Chemia, 60(2), 229–240. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8445

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.