REMOVAL OF LEAD FROM INDUSTRIAL WASTEWATER BY ELECTROCOAGULATION USING SACRIFICIAL ALUMINIUM ELECTRODES
Keywords:
lead contamination, sacrificial Al electrodes, lead removal, electrocoagulationAbstract
The aim of this study was to develop an ecological method for the removal of Pb2+ ions from industrial wastewater. The electrocoagulation (EC) process of Pb2+ has been studied, using an electrolytic flow cell (flow rate of 20, 40, 60 mL/min) equipped with sacrificial Al electrodes, operated under galvanostatic mode (current density of 5, 10 and 15 mA/cm2). In all experimental conditions the concentration of Pb2+ was lowered below the maximum allowable concentration (0.5 ppm). The experimental results showed that the performances of the process are more strongly dependent on the applied current density than on the applied flow rate. The electrolytic flow cell has proved to be quite effective, allowing the complete removal of lead with a specific energy consumption of 3.08 kWh/kg Pb removed.
References
X. Wei, B. Gao, P. Wang, H. Zhou, J. Lu, Ecotoxicology and Environmental Safety, 2015, 112, 4, 186.
H. Chen, Y. Teng, S. Lu, Y. Wang, J. Wang, The Science of the Total Environment, 2015, 512-513, 143.
B.H. Robinson, The Science of the Total Environment, 2009, 408, 2, 183.
V. Khandegar, A.K. Saroha, Journal of Environmental Management, 2013, 128, 949.
M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, H.R. Kermani, Journal of Hazardous Materials, 2008, 150, 2, 322.
E. Igberase, P. Osifo, Journal of Industrial and Engineering Chemistry, 2015, 26, 340.
X. Wang, Q. Chen, Z. Yin, M. Wang, B. Xiao, F. Zhang, Hydrometallurgy, 2011, 105, 3-4, 355.
B. Pospiech, Hydrometallurgy, 2015, 154, 88.
H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, Separation and Purification Technology, 2014, 135, 165.
M.M.S.G. Eiband, K.C. de A. Trindade, K. Gama, J.V.D. Melo, C.A. Martínez-Huitle, S. Ferro, Journal of Electroanalytical Chemistry, 2014, 717-718, 213.
F. Akbal, S. Camcı, Desalination, 2011, 269, 1-3, 214.
M.S. Oncel, A. Muhcu, E. Demirbas, M. Kobya, Journal of Environmental Chemical Engineering, 2013, 1, 4, 989.
O. Hanay, H. Hasar, Journal of Hazardous Materials, 2011, 189, 1-2, 572.
A.L. Ghirisan, S.L. Dragan, A. Pop, M. Simihaian, V. Miclaus, Can. J. Chem. Eng., 2007, 85, 6, 900.
M.M. Emamjomeh, M. Sivakumar, Journal of Environmental Management, 2009, 90, 5, 1663.
I. Petrinic, J. Korenak, D. Povodnik, C. Hélix-Nielsen, Journal of Cleaner Production, 2015, 101, 292.
I. Kabdasli, T. Arslan, T. Olmez-Hanci, I. Arslan-Alaton, O. Tunay, Journal of Hazardous Materials, 2009, 165, 1-3, 838.
S. Caprarescu, M.C. Corobea, V. Purcar, C.I. Spataru, R. Ianchis, G. Vasilievici, Z. Vuluga, Journal of Environmental Sciences, 2015, 35, 27.
F. Imre-Lucaci, S.-A. Dorneanu, P. Ilea, Studia Universitatis Babes-Bolyai Chemia, 2009, 54, 105.
B. Khaled, B. Wided, H. Béchir, E. Elimame, L. Mouna, T. Zied, Arabian Journal of Chemistry, 2015, doi:10.1016/j.arabjc.2014.12.012.
A. de Mello Ferreira, M. Marchesiello, P.X. Thivel, Separation and Purification Technology, 2013, 107, 109.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.