PROMOTED ALUMINA SUPPORTED Ni CATALYST FOR ETHANOL STEAM REFORMING

Authors

  • Monica DAN National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. Email: monica.dan@itim-cj.ro. https://orcid.org/0000-0003-1678-229X
  • Maria MIHET National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. Email: maria.mihet@itim-cj.ro. https://orcid.org/0000-0002-3548-2789
  • Mihaela Diana LAZAR National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. Email: diana.lazar@itim-cj.ro. https://orcid.org/0000-0002-1679-1324
  • Liana Maria MUREŞAN Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: limur@chem.ubbcluj.ro. https://orcid.org/0000-0002-2891-2947

Keywords:

Ethanol steam reforming, Ni-catalysts, hydrogen production

Abstract

The catalytic behavior of Ni/γ-Al2O3 catalyst modified with Cu, Ag, and Au was investigated in the process of ethanol steam reforming. The catalysts were prepared by co-impregnation and were characterized by specific surface area determination (SBET), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption (TPD) The data obtained from the experiments revealed that even at a temperature as low as 350°C, the ethanol is converted entirely, showing high selectivity for H2 and CH4.The activity of the Ni/γ-Al2O3 is only slightly increased by the addition of the supplementary metals. Nevertheless, the addition of metals to Ni/γ-Al2O3 has a positive effect in diminishing the quantity of CO2 produced in the reaction. The promoted alumina Ni catalysts present a higher stability in some experimental conditions.

References

A. Züttel, A. Remhof, A. Borgschulte, O.Friedrichs, Philosophical Transactions Series A Mathematical, physical, and engineering sciences, 2010, 368, 3329–3342.

C. Pirez, M. Capron, H. Jobic, F. Dumeignil, L. Jalowiecki-Duhamel, Angewandte Chemie International Edition, 2011, 50, 10193–10197.

L. He, J.M.S. Parra, E.A. Blekkan, D.Chen, Energy Environmental Science, 2010, 3, 1046–1056.

P.R. Piscina, N.Homs , Chemical Society Reviews, 2008,37, 2459–2467.

D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Chemical Society Review, 2012, 41, 8075–8098.

W. Xu, Z. Liu, A.C. Johnston-Peck, S.D. Senanayake, G. Zhou, D. Stacchiola et al., American Chemical Society Catalysis, 2013, 3, 975–984.

G. A. Deluga, J.R. Salge, L.D. Schmidt, X.E. Verykios, Science 2004, 303, 993–997.

A. Therdthianwong, T. Sakulkoakiet, S. Therdthianwong, Science Asia, 2001, 27,193–198.

A.N. Fatsikostas, X.E. Verykios, Journal of Catalysis, 2004, 225, 439–452.

M. Skotak, Z. Karpinski, W. Juszczyk, J. Pielaszek, L. Kepinski, D. Kazachkin et al., Journal of Catalysis, 2004, 227, 11–25.

M.C. Sánchez-Sánchez, R.M. Navarro, J.L.G Fierro, International Journal of Hydrogen Energy, 2007, 32, 1462–1471.

P.Y. Sheng, H.Idriss, Journal of Vacuum Science Technology A, 2004, 22, 1652-1658.

J. Raskó, A. Hancz, A. Erdőhelyi, Applied Catalysis A General, 2004, 269, 13–25.

Z. Wang, C. Wang, S. Chen, Y. Liu, International Journal of Hydrogen Energy, 2014, 39, 5644–5652.

R. Buitrago-Sierra, J. Ruiz-Martínez, J.C. Serrano-Ruiz, F. Rodríguez-Reinoso, A. Sepúlveda-Escribano, Journal of Colloids and Interface Science, 2012, 383, 148–154.

S. Li, M. Li, C. Zhang, S. Wang, X. Ma, J. Gong, International Journa of Hydrogen Energy, 2012, 37, 2940–2949.

R. Padilla, M. Benito, L. Rodríguez, A. Serrano, G. Muñoz, L.Daza, Internatioanl Journal of Hydrogen Energy, 2010, 35, 8921–8928.

H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, et al., Journal of. Catalysis, 2002, 209, 365–384.

N.V. Parizotto, K.O. Rocha, S. Damyanova, F.B. Passos, D. Zanchet, C.M.P. Marques, et al., Applied Catalysis A General, 2007, 330, 12–22.

A. Kubacka, M. Fernández-García, A. Martínez-Arias, Applied Catalysis A General., 2016, in press, doi:10.1016/j.apcata.2016.01.027

C. Ratnasamy, J.P. Wagner, Catalysis Reviews, 2009, 51, 325–440.

F. Wang, Y. Li, W. Cai, E. Zhan, X. Mu, W. Shen, Catalysis Today 2009,146, 31–36.

S.J. Gregg. Adsorption, Surface area and Porosity, Academic Press, 1982.

S. Velu, S.K. Gangwal, Solid State Ionics 2006,177, 803–811.

H. Wang, R.T.K Baker, The Journal Physical Chemistry B, 2004, 20273–20277.

Y. Matsumura, T. Nakamori, Applied Catalysis A General, 2004, 258,107–114.

A.G. Boudjahem, S. Monteverdi, M. Mercy, M.M. Bettahar, Journal of Catalysis, 2004, 221, 325–334.

Y. Cesteros, P. Salagre, F. Medina, J. Sueiras, Applied Catalysis B Environmetal, 2000, 25, 213–227.

L. García, Compendium of Hydrogen Energy, 2015.

G. Rabenstein, V. Hacker, Journal of Power Sources, 2008,185,1293–1304.

L.V. Mattos, G. Jacobs, B.H. Davis, F.B. Noronha., Chemical Reviews, 2012, 112, 4094–4123.

Z.L. Zhang, Verykios XE., Catalysis Today, 1994, 21, 589–595.

A. Tanksale, J.N. Beltramini, G.M. Lu., Renewable Sustainable Energy Reviews., 2010, 14, 166–182.

Downloads

Published

2016-06-30

How to Cite

DAN, M. ., MIHET, M. ., LAZAR, M. D. ., & MUREŞAN, L. M. . (2016). PROMOTED ALUMINA SUPPORTED Ni CATALYST FOR ETHANOL STEAM REFORMING. Studia Universitatis Babeș-Bolyai Chemia, 61(2), 137–154. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8314

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.