LOW CRYSTALLINITY NANOHYDROXYAPATITE PREPARED AT ROOM TEMPERATURE
DOI:
https://doi.org/10.24193/subbchem.2017.2.07Keywords:
nanohydroxyapatite, chemical synthesis, XRD, TEM, AFM, FTIR, BETAbstract
In order to obtain a low crystalline nanohydrxyapatite (HAP), suitable for biomedical application, a new synthesis procedure was developed, based on the aqueous precipitation method, at room temperature, without any additives. Accordingly, lyophilized HAP powders, both calcined and non calcined, were prepared, and characterized by XRD, TEM and AFM imaging, FTIR spectroscopy, zeta potential and BET measurements. The results confirmed HAP as the only phase present. The high porosity of this nanomaterial is attained. The nanoparticle size and shape as well as the crystallinity degree of the obtained HAP samples were also determined.
References
K. Lin, C. Wu, J. Chang, Acta Biomaterialia, 2014, 10, 4071.
H.E. Lundager Madsen, F. Christensson, Journal of Crystal. Growth, 1991, 114, 613.
C. Garbo, PhD Thesis, Babes-Bolyai University of Cluj-Napoca, Cluj-Napoca, 2016.
G. Tomoaia, M. Tomoaia-Cotisel, L. B. Pop, A. Pop, O. Horovitz, A. Mocanu, N. Jumate, L.-D. Bobos, Revue Roumaine de Chimie, 2011, 56, 1039.
G. Tomoaia, O. Soritau, M. Tomoaia-Cotisel, L.-B. Pop, A. Pop, A. Mocanu, O. Horovitz, L.-D. Bobos, Powder Technology, 2013, 238, 99.
S. Manocha, P. Joshi, B. Patel, L.M. Manocha, Eurasian Chemico-Technological Journal, 2011, 13, 85.
G.A. Martínez-Castañón, J.P. Loyola-Rodríguez, N.V. Zavala-Alonso, S.E. Hernández-Martínez, N. Niño-Martínez, G. Ortega-Zarzosa, F. Ruiz, Superficies y Vacío, 2012, 25 (2), 101.
S.V. Dorozhkin, Acta Biomaterialia, 2010, 6, 715.
E. Kramer, J. Podurgiel, M. Wei, Materials Letters, 2014, 131, 145.
Y.X. Pang, X. Bao, Journal of the European Ceramic Society, 2003, 23, 1697.
V. Dhand, K.Y. Rhee, S.J. Park. Materials Science and Engineering: C, 2014, 36,152.
H. Ou-Yang, E.P. Paschalis, A.L. Boskey, R. Mendelsohn, Biopolymers, Biospectroscopy, 2000, 57, 129.
N. Pleshko, A. Boskey, Mendelsohn, Biophysical Journal, 1991, 60, 786.
R.N. Panda, M.F. Hsieh, R.J. Chung, T.S. Chin, Journal of Physics and Chemistry of Solids, 2003, 64, 193.
C.B. Baddiel, E.E..Berry, Spectrochimica Acta, 1966, 22, 1407.
F. Bakan, O. Laçin, H. Sarac, Powder Technology, 2013, 233, 295.
W.L. Suchanek, P. Shuk, K. Byrappa, R.E. Riman, K.S. Ten Huisen, V.F. Janes, Biomaterials, 2002, 23, 699.
K. Nakata, T. Kubo, C. Numako, T. Onoki, A. Nakahira, Materials Transactions, 2009, 50, 1046.
A.Y. Pataquiva Mateus, C.C. Barrias, C. Ribeiro, M.P. Ferraz, F.J. Monteiro, Journal of Biomedical Materials Research Part A, 2008, 86A, 483.
A. Sionkowska, Kozłowska, International Journal of Biological Macromolecules, 2010, 47, 483.
D. Gopi, S. Nithiya, E. Shinyjoy, L. Kavitha, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 92, 194.
A. Slosarczyk, Z. Paszkiewicz, C. Paluszkiewicz, Journal of Molecular Structure, 2005, 744-747, 657.
J.C. Merry, J.R. Gibson, S.M. Best, W. Bonfield, Journal of Material Science: Materials in.Medicine, 1998, 9, 779.
K.P. Sanosh, M.C. Chu, A. Balakrishnan, T.N. Kim, S.J. Cho, Bulletin of Materials Science, 2009, 32, 465.
C. Drouet, F. Bosc, M. Banu, C. Largeot, C. Combes, G. Dechambre, C. Estournès, G. Raimbeaux, C. Rey, Powder Technology, 2009, 190, 118.
C. Garbo, M. Sindilaru, A. Carlea, G. Tomoaia, V. Almasan, I. Petean, A. Mocanu, O. Horovitz, M. Tomoaia-Cotisel, Particulate Science and Technology, 2017, 35, 29.
E. Bouyer, F. Gitzhofer, M.I. Boulos, Journal of Material Science: Materials in Medicine, 2000, 11, 523.
J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure and Applied Chemistry, 1994, 66, 1739.
Gh. Tomoaia, A. Mocanu, I. Vida-Simiti, N. Jumate, L.D. Bobos, O. Soritau, M. Tomoaia-Cotisel, Materials Science and Engineering C, 2014, 37, 37.
P.T. Frangopol, A. Mocanu, V. Almasan, C. Garbo, R. Balint, G. Borodi, I. Bratu, O. Horovitz, M. Tomoaia-Cotisel, Revue Roumaine de Chimie, 2016, 61 337.
A. Mocanu, G. Furtos, S. Rapuntean, O. Horovitz, C. Flore, C. Garbo, A. Danisteanu, Gh. Rapuntean, C. Prejmerean, M. Tomoaia-Cotisel, Applied Surface Science, 2014, 298, 225.
M.A. Naghiu, M. Gorea, E. Mutch, F. Kristaly, M. Tomoaia-Cotisel, Journal of Material Science and Technology, 2013, 29(7), 628.
O. Horovitz, Gh. Tomoaia, A. Mocanu, T. Yupsanis, M. Tomoaia-Cotisel, Gold Bulletin, 2007, 40 (4), 295.
M. Tomoaia-Cotisel, A. Tomoaia-Cotisel, T. Yupsanis, Gh. Tomoaia, I. Balea, A. Mocanu, Cs. Racz, Revue Roumaine de Chimie, 2006, 51 (12),1181.
A. Danistean, M. Gorea, A. Avram, S. Rapuntean, Gh. Tomoaia, A. Mocanu, C. Garbo, O. Horovitz, M. Tomoaia-Cotisel, Studia UBB Chemia, 2016, 61 (3), 275.
Gh. Tomoaia, O. Horovitz, A. Mocanu, A. Nita, A. Avram, C.P. Racz, O. Soritau, M. Cenariu, M. Tomoaia-Cotisel, Colloids and Surfaces B: Biointerfaces, 2015, 135, 726.
P.T. Frangopol. D.A. Cadenhead, Gh. Tomoaia, A. Mocanu, M. Tomoaia-Cotisel, Revue Roumaine de Chimie, 2015, 60(2-3), 265.
G. Furtos, M. A. Naghiu, H. Declercq, M. Gorea, C. Prejmerean, O. Pana, M. Tomoaia-Cotisel, Journal of Biomedical Materials Research Part B. Applied Biomaterials, 2016, 104 (7), 1290.
M. Tomoaia-Cotisel, A. Mocanu, Revista de Chimie (Bucharest), 2008, 59(11), 1230.
R.D. Pasca, G. Tomoaia, A. Mocanu, I. Petean, G.A. Paltinean, O. Soritau, M. Tomoaia-Cotisel, Studia UBB Chemia, 2015, 60(3), 257.
G. Tomoaia, A. Mocanu, L.D. Bobos, L.B. Pop, O. Horovitz, M. Tomoaia-Cotisel, Studia UBB Chemia, 2015, 60 (3), 265.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.