SIMPLE AND FAST PROCEDURE TO INCORPORATE DOXORUBICINE IN SMALL UNILAMELLAR LIPOSOMES: EFFECTS ON LIPOSOME SIZE AND ZETA POTENTIAL
DOI:
https://doi.org/10.24193/subbchem.2019.3.15Keywords:
Liposomes, Doxorubicin encapsulation, size and zeta potentialAbstract
This study aimed to find alternative, cheap and fast procedures to incorporate Doxorubicin in small unilamellar nanoliposomes made of Dipalmitoyl Phosphatidyl Choline and Cholesterol. It was compared the entrapment efficiency of doxorubicin in home-made liposomes (1) and in ImmunoSOME liposomes (2), a commercial, expensive formulation. It was obtained an entrapment efficiency of 27.6 % vs 12.1% for formulatios (1) vs (2). The liposomes’ size and zeta-potential of formulation (1) ranged from 116 and 120 nm, being smaller than in formulation (2). The zeta potential was negative for both formulations and showed a better stability and monodispersibility also for formulation (1). This fast procedure is convenient and assure efficient doxorubicin entrapment in the monodisperse nanoliposomes. Such simple formulations, easier to be obtained, can offer also good quality/ price ratios and can be produced at larger scale, with higher incorporation efficiency for experimental in vivo studies which aims the targeted delivery of Doxorubicin to cancer tumors in animals.
References
H. Cortes-Funes; C. Coronado; Cardiovasc. Toxicol., 2007, 7, 56-60.
A. Akbarzadeh; R. Rezaei-Sadabady; S. Davaran; S.W. Joo; N. Zarghami; Y. Hanifehpour; M. Samei; M. Kouhi; K. NejatiKoshki; Nanoscale Res. Lett., 2013, 8, 1-9.
N. Bergstrand; PhD diss. Acta Univ. Upsaliensis, Uppsala, 2003.
J.S. Dual; A.C. Rana; A.K. Bhandari; Int. J. Pharm. Sci. Res., 2012, 3, 14-20.
Y. P. Patil; S.Jadhav; Chem. Phys. Lipids, 2014,177, 8-18.
H. Ohvo-Rekila; B. Ramstedt; P. Leppimaki; J.P. Slotte; Prog. Lipid Res., 2002, 41, 66-97.
C. Socaciu; R. Jessel; H. Diehl; Chem. Phys. Lipids, 2000, 106, 79-88.
A. Gabizon; R. Shiota; D. Papahadjopuulos; J. Natl. Cancer I., 1989, 81,1484-1488.
A. Gabizon; R. Catane; B. Uziely; B. Kaufman; T. Safra; R. Cohen; Cancer Res., 1994, 54, 987-992.
A.L. Seynhaeve; B.M. Dicheva; S. Hoving; G.A. Koning; T.L. Ten Hagen; J. Control. Release, 2013, 172, 330-340.
Cabanes A; Tzemach D; Goren D; Horowitz AT; Gabizon A. Clin. Cancer Res., 1998, 4, 499-505.
P. Mohan; N.Rapoport; Mol. Pharm. 2010, 7, 1959-1973.
P. C. Soema; G-J. Willems; W. Jiskoot; J-P. Amorij; G.F. Kersten; Eur. J. Pharm. Biopharm., 2015, 94, 427-435.
F. Haghiralsadat; G. Amoabediny; M.H. Sheikhha; T. Forouzanfar; J.M. Arough; M.N. Helder; B. Zandieh-doulabi; Cell Journal (Yakhteh), 2017, 19, 55-65.
L.R. Tefas; B. Sylvester; I. Tomuta; A. Sesarman; E. Licarete; M. Banciu; Drug Des. Dev. Ther., 2017, 11, 1605-1621.
G. Haran; R. Cohen; L.K. Bar; Y. Barenholz; Biochim. Biophys. Acta, 1993, 1151, 201-215.
E. Chibowski; A. Szczes; Adsorption, 2016, 22, 755-765.
Y.H. Ngan; M. Gupta; Arch. Pharm. Pract., 2016, 7, 1-13.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.