ATTENUATED TOTAL REFLECTANCE – FOURIER TRANSFORM INFRARED SPECTROSCOPY APPLIED FOR THE EVALUATION OF ESSENTIAL OILS’ PATTERN RECOGNITION AND THERMO-OXIDATIVE STABILITY: A COMPARATIVE STUDY
DOI:
https://doi.org/10.24193/subbchem.2021.4.03Keywords:
essential oils fingerprinting, Attenuated Total Reflectance Mid Infrared Spectroscopy, thermal oxidation.Abstract
The Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy was applied for the evaluation of specific patterns for six different essential oils obtained from aromatic plants (thyme, oregano, tea tree) or common spices (clove, cinnamon, juniper). The spectral fingerprints were recorded using a Shimadzu IR Prestige-21 spectrometer in the middle infrared region (3500-650 cm-1) before and after thermal oxidation in hot air. In parallel, the peroxide index, cis-trans isomerization and lipoperoxidation were evaluated to determine their oxidative stability. Each oil showed specific FTIR spectra, especially in the fingerprint region (1650-650 cm-1), in good agreement with our previous GC-MS analysis of the same samples. The spectral patterns in this region were also correlated with their oxidative stability, chemically determined. The spectral data were processed by multivariate analysis (Metaboanalyst 5.0 software) and the discriminatory analysis helped to identify each oil pattern.
This study combined the capability of ATR-FTIR-MIR spectroscopy to realize a pattern recognition of essential oils as a rapid and non-destructive method, as well the oxidative modifications, easier than chemical routine tests. This study contributes to the control of quality, authenticity, and safety of essential oils and can be extended to other extracts, used as additives or ingredients in food or cosmetic products.
References
M.D. Guillén; N. Cobo; J. Sci. Food Agric., 1997, 75, 1–11.
A.S. Franca; L.M.L. Nollet; Spectroscopic Methods in Food Analysis, CRC Press, NY, 2017, 664 pg.
D.-W. Sun; Infrared Spectroscopy for Food Quality Analysis and Control; Academic Press: Cambridge, MA, USA, 2009.
C. Socaciu; F. Ranga; F. Fetea; D. Leopold; F. Dulf; R. Parlog; Czech J. Food Sci., 2009, 27, S70–S75.
W.-H. Su; D.-W. Sun; Food Eng. Rev., 2019, 11, 142–158.
Q. Li; J. Chen; Z. Huyan; Y. Kou; L. Xu; X. Yu; J.-M. Gao; Crit. Rev. Food Sci. Nutr., 2019, 59, 3597–3611.
G. Gurdeniz; F. Tokatli; B. Ozen; Eur. J. Lipid Sci. Technol., 2007, 109, 1194–1202.
Y.W. Lai; E.K. Kemsley; R.H. Wilson; J. Agric. Food Chem., 1994, 42, 1154–1159.
D.A. Rusak; L.M. Brown; S.D. Martin; J. Chem. Educ., 2003, 80, 541–543.
L. Xu; X. Zhu; X. Yu; Z. Huyan; X. Wang; Eur. J. Lipid Sci. Technol., 2018, 120, 1700396.
J. Xia; N. Psychogios; N. Young; D.S. Wishart; Nucleic Acids Res., 2009, 37, W652–W660.
Y. Le Dreau; N. Dupuy; J. Artaud; D. Ollivier; J. Kister; Talanta, 2009, 77, 1748–1756.
L. Cerretani; A. Giuliani; R.M. Maggio; A. Bendini; T.G. Toschi; A. Cichell; Eur. J. Lipid Sci. Technol., 2010, 112, 1150–1157.
N.Vlachos; Y. Skopelitis; M. Psaroudaki; V. Konstantinidou; A. Chatzilazarou; E. Tegou; Anal. Chim. Acta, 2006, 459–465.
M.D. Guillen; N. Cabo; J. Sci. Food and Agr., 2000, 80, 2028-2036.
B. Muik; B. Lendl; A. Molina-Diaz; M. Valcarcel; M.J. Ayora-Canada; Anal. Chim. Acta, 2007, 593, 54–67.
M.A. Poiana; E. Alexa; M.F. Munteanu; C. Mateescu; Open Chemistry, 2015, 13, 689–698.
C. Socaciu; F. Fetea; F. Ranga; A. Bunea; F. Dulf; S. Socaci; A. Pintea; Appl. Sci. 2020, 10, 8695.
H. Yang; J. Irudayaraj; M.M. Paradkar; Food Chem., 2005, 93, 25–32.
L.E. Rodriguez-Saona; M.E. Allen Dorf; Ann. Rev. Food Sci. Technol., 2011, 2, 467–483.
A. Biancolillo; F. Marini; C. Ruckebusch; R. Vitale; Appl. Sci., 2020, 10, 6544.
A.C. Godoy; P.D.S. dos Santos; A.Y. Nakano; R.A. Bini; D.A.B. Siepmann; R. Schneider; P.A. Gaspar; P.W.D. Pfrimer; R.F. da Paz; O.O. Santos; Food Anal. Meth., 2020, 13, 1138–1147.
F. Bachion de Santana; W. Borges Neto; R.J. Poppi; Food Chem., 2019, 293, 323–332.
C. Fisher; T.R. Scott; Food Flavours: Biology and Chemistry, Royal Society of Chemistry, 2007, 176 pg, ISBN 9781847550866
J. Rivera Calo; P.G. Crandall, C.A. O'Bryan; S.C. Ricke; Food Control, 2015, 54, 111-119.
A. Wesołowska; D. Jadczak; Not. Bot. Horti. Agrobo., 2019, 47, 829-835.
V. Istudor; Farmacognozie, Fitochimie, Fitoterapie, vol. II, Ed. Medicală, Bucureşti, 2001
S.A. Johnson; Medicinal Essential Oils: The Science and Practice of Evidence-Based Essential Oil Therapy, Lightning Source Inc. Publ, 2017.
F. Bakkali; S. Averbeck; D. Averbeck; M. Idaomar; Food and Chem Toxicol., 2008, 46, 446–475.
S. Baptista-Silva; S. Borges; O.L. Ramos; M. Pintado; B. Sarmento; J. of Essential Oil Res., 2020, 32, 279-295.
T.K.T. Do; F. Hadji-Minaglou; S. Antoniotti; X. Fernandez; Trends Anal Chem., 2015, 66, 146-157.
I.L. Milovanović; A.C. Mišan; M.B. Sakač; I.S. Čabarkapa; B.M. Šarić; J.J. Matić; P.T. Jovanov; Food Process Quality Safety, 2009, 3-4, 75-79.
European Pharmacopoeia (Ph. Eur.) 10th Edition, 2020
O.Taylan; N. Cebi; O. Sagdic; Foods, 2021, 10, 202-212.
N. Cebi; O. Taylan; M. Abusurrah; O. Sagdic; Foods, 2021,10, 27-32.
J.D. Wicochea Rodriguez; S. Peyron; P.Rigou; P.Chalier; PLoS ONE, 2018,13, e0207401.
S. Agatonovic-Kustrin; P. Ristivojevic; V. Gegechkori; T.M. Litvinova; D.W. Morton; Appl. Sci., 2020, 10, 7294.
B. Bozin; N. Mimica-Dukic; N. Simin; G. Anackov; J Agric Food Chem., 2006, 54,1822–1828.
C. Turek; F.C. Stintzing; Compr. Rev. Food Sci. Food Safety, 2013, 12, 40-53.
P. Satyal; B.L. Murray; R.L. Mcfeeters; W.N. Setzer; Foods, 2016, 5, 70-75.
A.K. Al-Asmari; T. Athar; A.A. Al-Faraidy; M.S. Almuhaiza; Asian Pac. J. Trop. Biomed., 2017, 7, 147–150.
J. Kula; T. Majda; A. Stoyanova; E. Georgiev; J. Essent. Oil Bear Plant., 2007, 10, 215-220.
X. Stoilova; S. Bail; G. Buchbauer; A. Krastanov; A. Stoyanova; E. Schmidt; et al ; Bosnia Nat. Prod. Commun., 2008, 3, 1043-1046.
Salamon; P. Petruska; Indian J.Pharmaceut.Educ. Res.,2017, 51, S479-S482.
S. Falcãoa; I. Bacémb; G. Igrejasb; P.J. Rodriguesc; M. Vilas-Boasa; J.S. Amarala; Ind Crops & Prod., 2018,124, 878–884.
I. Amri; E. Mancini; L. De Martino; A. Marandino; H.Lamia; H. Mohsen; J. Bassem; M. Scognamiglio; E. Reverchon; V. De Feo; Int.J.Mol.Sci, 2012, 13, 16580-16591.
D. Gallart-Mateua; C.D. Largo-Arangoa; T. Larkmanb; S. Garriguesa; M. De La Guardia; Talanta, 2018, 189, 404-410.
K. Chaieb; H. Hajlaoui; T. Zmantar; A. Ben Kahla-Nakbi ; M, Rouabhia; K. Mahdouani; Phytotherapy Res. 2007, 21, 501–506.
H. Boughendjioua; IRJPMS, 2018, 11, 26-28.
G. Jayaprakasha; L. Rao; Crit Rev Food Sci Nutr. 2011, 51, 547-562.
K.M. Brodowska; A.J. Brodowska; K. Śmigielski; E. Łodyga-Chruścińska; Eur J Biol Res., 2016, 6, 310-316.
J. Shao; Y. Zhang; Z. Zhu; Tropical J. Pharm. Res., 2018, 17, 1839-1845.
W. Zhou; Z. Liang; P. Li; Z. Zhao; J.Chen-Zhou; Chem. Central J., 2018, 12, 71-78.
R.M. Popa; S. Socaci; A. Farcas; C. Socaciu; Bull USAMV Food Sci Technol, 2021, 78, 88-100.
R.M. Popa; F. Fetea; C. Socaciu; Molecules, 2021, in press.
AOCS Official Method 14D-99, Rapid Determination of Isolated geometric trans Isomers in fats and oils by Attenuated Total Reflectance Infrared Spectrometry, 7th edition, revised 2020.
M.W. Davey; E. Stals; B. Panis; J. Keulemans; R.L. Swennen; Anal. Biochem., 2005, 347, 201–207.
V. Nair; C.L. O'Neil; P.G. Wang; Malondialdehyde, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, New York, 2008.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.