INFLUENCE OF LANDFILL METHANE EMISSIONS ON ENVIRONMENT – DISTRIBUTION MODELLING AND ASSESSMENT
DOI:
https://doi.org/10.24193/subbchem.2020.1.24Keywords:
Methane emission, Air dispersion, Modelling, LandGem, ADMS urban, SerbiaAbstract
Landfilling practice in countries with waste management in transition is associated with non-controlled landfill gas and leachate emission. This practice requires sanitary landfill operations and remediation of unsanitary landfills as a prerequisite to join European Union. In order to get first insights on methane distributions for subsequent risk assessment model, this research, assess methane behavior patterns after emissions in the ambient air on environment from the controlled landfill site in Novi Sad, Republic of Serbia. Methane emission rate was assessed and crosschecked using landfill gas emissions model (LandGEM). The ADMS Mapper was used for the 3D simulation of the real environment of research field, including the complex structure of the landfill body and surrounding area. For simulation of methane dispersion into atmosphere, advanced Gaussian dispersion model ADMS Urban was applied. After processing and synthesis of the meteorological data, and defining the emission potential, simulations of the methane dispersion under different meteorological conditions (wind speed and direction, atmospheric temperature, humidity, pressure and cloud cover) were performed. As a result, methane distribution pattern was noted, several most unfavorable meteorological conditions and scenarios of methane distribution were assessed, and most vulnerable zones and locations influenced by the landfill methane emissions were identified.References
N. Stanisavljević; D. Ubavin; B. Batinić; J. Fellner; G. Vujić; Waste Management and Research, 2012, 30(10), 1095–1103.
SEPA; Serbian Agency for Environmental Protection, 2017, available at: www.sepa.gov.rs, (accessed 16 November 2017).
G. Vujic; N. Jovičić; M. Petrović-Djurović; D. Ubavin; B. Nakomčić; G. Jovičić; D. Gordić; Therm. Sci., 2010, 14(2), 555-564.
E. Mihajlović; L. Milošević; J. Radosavljević; A. Djordjević; I. Krstić; Therm. Sci., 2016, 20(4), 1295-1305.
R. V. Karanjekar; A. Bhatt; S. Altouqui; N. Jangikhatoonabad; V. Durai; M. L. Sattler; M. D. Sahadat Hossain; V. Chen; J. Waste Manag., 2015, 46, 389–398.
IPCC, Guidelines for National Greenhouse Gas Inventories, 2006, Volume 5 - Waste ISBN 4-88788-032-4.
A. Leelossy; Jr. Ferenc Molnár; F. Izsák; A. Havasi; I. Lagzi; R. Mészáros; Centr. Eur. J. Geosci., 2014, 6(3), 257-278.
N. S. Holmes; L. Morawska; Atmos. Environ., 2006, 40(30), 5902–5928.
D. M. Taylor; F. K. Chow; M. Delkash; P. T. Imhoff; J. Waste Manag., 2018, 73, 197–209.
J. G. Mønster; J. Samuelsson; P. Kjeldsen; C. W. Rella; C. Scheutz; J. Waste Manag., 2014, 34(8), 1416–1428.
R.J. Cicerone, R.S Oremland; Global Biogeochem. cycles, 1988, 2(4), 299-327.
C. G. Nolte; T. L. Spero; J. H. Bowden; M. S. Mallard; P. D. Dolwick; Atmosph. Chem. Phys., 2018, 18(20), 15471–15489.
I. Paraskaki; M. Lazaridis; Waste Manag. Res., 2005, 23(3), 199–208.
Z. Torok, N. Ajtai, A. Ozunu; Studia UBB Chemia, 2009, LIV1, 49-58
M. Á. García; M. L. Sánchez; I. A. Pérez; M. I. Ozores; N. Pardo; Sci.Tot. Environ., 2016, 550, 157–166.
A. T. Lando; H. Nakayama; T. Shimaoka; J. Waste Manag., 2017, 59, 255–266.
I. Haiduc; M.S. Beldean–Galea; Air Quality – Models and Applications, 2011, INTech, UK, 289–318.
C. Cuna; P. Ardelean; S. Cuna; Studia UBB Physica XLVIII, 2003, 565–567.
M. Aikawa; T. Hiraki; J. Eiho; Atmos. Environ., 2006, 40(23), 4308–4315.
E. Ahmed; K. H. Kim; E. C. Jeon; R. J. C; Sci. Total Environ., 2015, 518–519, 595–604.
CERC; ADMS-Urban: Urban Air Quality Management System. User Guide. Version 3.1. 2001, CERC Limited, Cambridge, available at: www.cerc.co.uk, (accessed 14 September 2017).
S. E. Belcher; O. Coceal; J. C. R. Hunt; D. J. Carruthers; A. G. Robins; Atmospheric Dispersion Modelling Liaison Committee, ADMLC-R7, 2013.
B. Vujic; U. Marceta; V. Mihajlovic; A. Djuric; Reciklaza i Odrzivi Razvoj, 2018, 10(1), 9–14.
U.S. Environmental Protection Agency: Washington, D.C., Landfill Gas Emissions Model (LandGEM), Version 3.02 User’s Guide, 2005, available at: http://www.epa.gov/
ttncatc1/dir1/landgem-v302-guide.pdf, accessed (03 Jun 2018).
C. Scheutz; P. Kjeldsen; J. E. Bogner; A. De Visscher; J. Gebert; H. A. Hilger; K. Spokas; Waste Manag. Res., 2009, 27(5), 409–455.
R. He; A. Ruan; C. Jiang; D. Shen; Bioresource Technol., 2008, 99(15), 7192–7199.
J. Berger; L. V. Fornés; C. Ott; J. Jager; B. Wawra; U. Zanke; Waste Manag., 2005, 25(4 SPEC. ISS.), 369–373.
R. H. Kettunen; J. K. M. Einola; J. A. Rintala; Water, Air, Soil Pol., 2006, 177(1–4), 313–334.
IMG; International Management Group, Saint-Gilles, Belgium: IMG. 2014, available at: www.img-int.org/Central/Public08/, (accessed 17 December 2017).
C. Frola; D. De Roze; Solid Waste Association of North America, Sylver Spring, SAD, 1997.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.