BIOGAS PRODUCTION USING WASTE WATERS – INFLUENCE OF PROCESS PARAMETERS FOR TEST RIG AT LABORATORY SCALE
DOI:
https://doi.org/10.24193/subbchem.2017.1.04Keywords:
wastewater, anaerobic digestion, biogas, methane yieldAbstract
Biogas production by anaerobic digestion of residual waters from different sources (a treatment plant and a beer factory) was investigated in laboratory small scale batch reactors. Both wastewaters represent efficient biogas substrates. As concern the methane composition, the value is slightly higher in the case of biogas produced by anaerobic digestion of wastewater from beer factory. In the second part of this study, anaerobic co-digestion of wastewater and cow whey was performed. Addition of cow whey to wastewater from beer factory increase the biogas yield, while the addition of cow whey to wastewater from treatment plant decrease the biogas yield. In both cases of co-digestion, the methane content in biogas was higher than in the single digestion processes.
References
D.A. Ilutiu-Varvara, Environmental Engineering and Management Journal, 2010, 9, 6, 813.
M.-H. Huang, Y.-M. Li, G.-W. Gu, Desalination, 2010, 262(1–3), 36.
P.P. Kalbar, S. Karmakar, S.R. Asolekar, Journal of Environmental Management, 2012, 113, 158.
P.R. Gogate, A.B. Pandit, Advances in Environmental Research, 2004, 8(3–4), 501.
S. Connaughton, G. Collins, V. O’Flaherty, Water Research, 2006, 40, 2503.
S. Rasi, A. Veijanen, J. Rintala, Energy, 2007, 32, 1375.
M.R.J. Daelman, Van E. M. Voorthuizen, U.G.J.M. Van Dongen, E.I.P. Volcke, M.C.M. Van Loosdrecht, Water Research, 2012, 46, 3657.
S. Luostarinen, S. Luste, M. Sillanpää, Bioresource Technology, 2009, 100, 79.
L. Appels, J. Baeyens, J. Degreve, R. Dewil, Progress in Energy and Combustion Science, 2008, 34, 755.
R. Pattnaik, R.S. Yost, G. Porter, T. Masunaga, T. Attanandana, Ecological Engineering, 2007, 32, 1.
A.R. Prazeres, F. Carvalho, J. Rivas, Journal of Environmental Management, 2012, 110, 48.
T. Spachos, A. Stamatis, Renewable Energy, 2011, 36, 2097.
F. Malaspina, C.M. Cellamare, L. Stante, A. Tilche, Bioresource Technology, 1996, 55, 131.
N. Venetsaneas, G. Antonopoulou, K. Stamatelatou, M. Kornaros, G. Lyberatos, Bioresource Technology, 2009, 100, 3713.
E. Dinuccio, P. Balsari, F. Gioelli, S. Menardo, Bioresource Technology, 2010, 101, 3780.
A.R. Madureira, C.I. Pereira, A.M.P. Gomes, M.E. Pintado, F.X. Malcata, Food Research International, 2007, 40, 1197.
European Standard EN 14774: 2009, Solid biofuels – Determination of moisture content – Oven dry method.
European Standard EN 14775: 2009, Solid biofuels - Determination of ash content.
European Standard EN 14918: 2010, Solid biofuels – Determination of calorific value.
European Standard EN 15290: 2011, Solid biofuels – Determination of major elements.
European Standard EN 15104: 2011, Solid biofuels – Determination of total content of carbon, hydrogen and nitrogen – Instrumental methods.
European Standard EN 15148: 2010, Solid biofuels – Determination of the content of volatile matter.
J. Yi, B. Dong, J. Jin, X. Dai, PLoS ONE, 2014, 9(7), e102548. doi:10.1371/journal.pone.0102548.
S. Maamri, M. Amrani, Energy Procedia, 2014, 50, 352.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.