MORPHO-TEXTURAL AND FLUORESCENCE STUDIES ON SIO₂ AND SIO₂@Ce³⁺

Authors

  • Elena-Mirela PICIORUȘ “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazu Bvd., 300223, Timisoara, Romania
  • Cătălin IANĂȘI “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazu Bvd., 300223, Timisoara, Romania https://orcid.org/0000-0002-5137-8164
  • Roxana NICOLA “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazu Bvd., 300223, Timisoara, Romania
  • Paula SFÎRLOAGĂ National Institute for Research and Development in Electrochemistry and Condensed Matter, 144 Prof. Dr. Aurel Paunescu Podeanu Str., Timisoara, Romania https://orcid.org/0000-0002-8947-3810
  • Paul SVERA National Institute for Research and Development in Electrochemistry and Condensed Matter, 144 Prof. Dr. Aurel Paunescu Podeanu Str., Timisoara, Romania
  • Ana-Maria PUTZ “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazu Bvd., 300223, Timisoara, Romania. *Corresponding author: putzanamaria@yahoo.com https://orcid.org/0000-0001-9349-4721

DOI:

https://doi.org/10.24193/subbchem.2020.1.15

Keywords:

sol-gel, Ce (III) carbonate hydrate, Stöber, spherical particles

Abstract

Spherical silica xerogels were synthesized by Stöber route using tetra-ethyl-orthosilicate (TEOS) in order to obtain good properties for opto-electronic and catalytic applications. The reactants mole ratio was n TEOS: H2O: ETOH: NH3 (where n = 0.098 ÷ 0.26: 0.45: 0.789: 0.06). To study these properties, we know from literature, that nanoparticles under 100 nm show unique electrical, mechanical and optical properties. We have choosen the optimum sample, with the smaller surface area and particles size of 91 nm. To improve the optical properties, this sample was further doped with 0.1% Ce3+. The obtained xerogel was thermally treated at 300, 600 and 900 oC. The changes in properties were put in evidence by morpho-textural (N2 adsorption–desorption isotherms and SEM images) and optical measurements (FT-IR, Fluorescence and Raman spectra’s).

References

O. M. Ntwaeaborwa; P. H. Holloway; Nanotechnology, 2005, 16(6), 865–868.

R.S. Ningthoujam; V. Sudarsan; A. Vinu; P. Srinivasu; K. Ariga; S.K. Kulshreshtha; A.K. Tyagi; J. Nanosci. Nanotechnol. 2008, 8(3), 1489-1493.

R. Reisfeld; Opt. Mater., 2001, 16(1-2), 1-7.

V. P. Dotsenko; I. V. Berezovskaya; N. P. Efryushina; A.S. Voloshinovskii; P. Dorenbos; C. W. E van Eijk; J. Lumin., 2001, 93(2), 137-145.

A. Vedda; A. Baraldi; C. Canevali; R. Capelletti; N. Chiodini; R. Francini; M. Martini; F. Morazzoni; M. Nikl; R. Scotti; G. Spinolo; Nucl. Instrum. Methods Phys. Res. A.; 2002, 486(1-2), 259–263.

W. Stoeber; A. Fink; E. Bohn; J. Colloid. Interface. Sci., 1968, 26(1), 62-69.

A. J. Silversmith; N. T. T. Nguyen; B. W. Sullivan; D. M. Boye; C. Ortiz; K.R. Hoffman; J. Lumin., 2008, 128, 931–933.

C. J. Brinker; G. W. Scherer; Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, Academic Press: New-York, 1990; pp. 581-585.

A Beganskienė; V. Sirutkaitis; M. Kurtinaitienė; R. Juškėnas; A. Kareiva; Mater. Sci., 2004, 10(4), 287-290.

C. L. D. Vasconcelos; W. R. Campos; V. Vasconcelos; W. L. Vasconcelos; Mater. Sci. Eng. A-Struct., 2002, 334(1-2), 53-58.

A. Bertoluzza; C. Fagnano; M. A. Morelli; V. Gottardi; M. Guglielmi; J. Non-Cryst. Solids, 1982, 48(1), 117-128;

K. S. W. Sing; D. H. Everett; R. W. Haul; L. Moscou; R. A. Pierotti; J. Rouquerol; T. Siemieniewska; Pure Appl. Chem., 1984, 57, 603–619.

M. Thommes; K. Kaneko; A. V. Neimark; J. P. Olivier; F. Rodriguez-Reinoso; J. Rouquerol; K. Sing; Pure Appl. Chem., 2015, 87(9-10), 1051-1069.

E. P. Barrett; L. G. Joyner; P. P. Halenda; J. Am. Chem. Soc., 1951, 73(1), 373-380.

S. Sun; H. Zeng; J. Am. Chem. Soc., 2002, 124, 8204–8205.

I. A. Rahman; P. Vejayakumaran; C.S. Sipaut; J. Ismail; C.K. Chee; Mater. Chem. Phys., 2009, 114(1), 328–332.

H. Zhang; D. R. Dunphy; X. Jiang; H. Meng; B. Sun; D. Tarn; M. Xue; X. Wang; S. Lin; Z. Ji; R. Li; F. L. Garcia; J. Yang; M. L. Kirk; T. Xia; J. I. Zink; A. Nel; C. J. Brinker; J. Am. Chem. Soc., 2012, 134(38), 15790−15804.

L. Brentano-Capeletti; J. H. Zimnoch; Fourier Transform Infrared and Raman Characterization of Silica-Based Materials, in Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, M. Stauffer Eds.; Intech Open, London, UK, 2016, Chaper 1, pp. 3-21.

P. Borowicz; A. Taube; W. Rzodkiewicz; M. Latek; S. Gieraltowska; Sci. World J., 2013, 2080-2081, 1-6.

K. J. Kingma; R. J. Hemley; Am. Mineral. 1994, 79(3-4), 269-273.

Y. Li; X. Yu; T. Yu; J. Mater. Chem. C, 2017, 5, 5411-5419.

I. Coroiu; E. Culea; A. Darabont; J. Magn. Magn. Mater., 2005, 290-291, 997–1000.

Y. Yu; D. Chen; Y. Wang; W. Luo; Y. Zheng; Y. Cheng; L. Zhou; 2006, Mater. Chem. Phys. 100(2-3), 241–245.

A. Papavasiliou; D. Tsiourvas; E. G. Deze; S. K. Papageorgiou; F. K. Katsaros; E. Poulakis; C. J. Philippopoulos; N. Boukos; Q. Xin; P. Cool; Chem. Eng. J. 2016, 300, 343–357.

X. M. Lin; L. P. Li; G. S. Li; W. H Su; Mater. Chem. Phys., 2001, 69(1-3), 236-240.

F. Liu; L. Chen; J. K. Neathery; K. Saito; K. Liu; Ind. Eng. Chem. Res. 2014, 53,16341-16348.

A. Pasquarello; R. Car; Phys. Rev. Lett., 1998, 80(23), 5145-5147.

J. Z. Shyu; W. H. Weber; H. S. Gandhi; J. Phys. Chem., 1988, 92(17), 4964-4970.

Downloads

Published

2020-03-20

How to Cite

PICIORUȘ, E.-M., IANĂȘI, C., NICOLA, R., SFÎRLOAGĂ, P., SVERA, P. ., & PUTZ, A.-M. (2020). MORPHO-TEXTURAL AND FLUORESCENCE STUDIES ON SIO₂ AND SIO₂@Ce³⁺. Studia Universitatis Babeș-Bolyai Chemia, 65(1), 189–203. https://doi.org/10.24193/subbchem.2020.1.15

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 

You may also start an advanced similarity search for this article.