POROUS SILICAS FROM MIXTURES OF Na₂Si₃O₇ AQUEOUS SOLUTION AND TEOS. INFLUENCE OF SODIUM SILICATE AMOUNT
DOI:
https://doi.org/10.24193/subbchem.2021.1.03Keywords:
Na₂Si₃O₇, TEOS, mesoporous materials, roughness, porosityAbstract
Silicon-based mesoporous materials have become increasingly used in various fields as industry, medicine, environment, etc. We developed five samples in mild conditions, at room temperature, of mesoporous silica by substituting tetra-ethyl-orthosilicate (TEOS) with different amount of sodium silicate (Na₂Si₃O₇) precursor by maintaining the total ratio for SiO₂ at 1.8g. Acetic acid (CH₃COOH)/hydrochloric acid (HCl) aqueous solution was used as catalyst keeping the pH at 5. The samples were examined by FT-IR, Raman Spectroscopy, Scanning Laser Confocal Microscopy and Nitrogen Adsorption-Desorption Isotherms. The results indicate enhancements when Na₂Si₃O₇ was added. Sample with TEOS and lowest amount of Na₂Si₃O₇ displayed the best surface area value (750 m²/g) and total pore volume (0.63 cm³/g). Highest amount of Na₂Si₃O₇ in the sample (P5) has considerably influenced the roughness of the material.References
N.P. Rizky; A.B. Herny; M.H. Agus; Sekartedjo and D.R. Doty; Proc. Eng., 2017, 170, 93
G.H. Bogush; M.A. Tracy and C.F. Zukosky; J. Non-Cryst. Solids 1988, 104, 95
M. Sadeghi; M. Dorodian and M. Rezaei; J. of Adv. In Chem., 2013, 6, 917-922
G. Herbert; J. Eur. Ceram. Soc. 1994, 14, 205-214
A.-M. Putz; L. Almasy; A. Len; C. Ianasi, Fuller. Nanotub. Car. N., 2019, 27, 323-332
A.-M. Putz; C. Savii; C. Ianasi; Z. Dudás; K.N. Székely; J. Plocek; P. Sfârloagă; L. Săcărescu; L. Almásy, J. Porous Mater., 2015, 22, 321-331
D. Nagao; H. Osuzu; A. Yamada; E. Mine; Y. Kobayashi; M. Konno; J. Colloid Interface Sci. 2004, 279, 143-149
S. Vemury; S.E. Pratsinis; L. Kibbey; J. Mater. Res., 1997, 12, 1031-1042
T. Tani; N. Watanabe; K. Takatori; J. Nanoparticle Res., 2003, 5, 39-46
G.H. Bogush and C.F. IV Zukoski J. Colloid Interface Sci, 1991, 142, 19-34
L.T. Arenas; C.W. Simm; Y. Gushikem; S.L.P. Dias; C.C. Moro; T.M.H. Costa, E.V. Benvenutti; J. Braz. Chem. Soc., 2007, 18, 886-890
R.S. Dubey; Y.B.R.D. Rajesh; M.A. More; Mater. Today Proc., 2015, 2, 3575-3579
S. Lazareva; N. Shikina; L. Tatarova and Z. Ismagilov; Eurasian Chem.-Technol. J., 2017, 19, 295-302
Q. Guo; D. Huang; X. Kou; W. Cao; L. Li; L. Ge; J. Li; Ceram. Int., 2017, 43, 192-193
A.A. Hamouda and H.A.A. Amiri; Energies 2014, 7 568-590
H.C. Liu; J.X. Wang; Y. Mao; R.S. Chen; Colloid Surf. A Physicochem. Eng. Asp., 1993, 74, 7
M.F. Zawrah; A.A. EL-Kheshen; H.M. Abd-El-Aal, J. Ovonic Resear., 2009, 5, 129-133
S.-W. Ui; I.-S. Choi; S.-C. Choi; Int. Sch. Res., 2014, Article ID 834629, 1-6
S.S. Hayrapetyan; H.G. Khachatryan; Microporous Mesoporous Mater., 2005, 78, 151-157
N. Yu; Y. Gong; D. Wu; Y. Sun; Q. Luo; W. Liu; F. Deng; Microporous Mesoporous Mater. 2004, 72, 25-32
B.S. Chun; P. Pendleton; A. Badalyan; S.-Y. Park; Korean J. Chem. Eng., 2010, 27, 983-990
M.C.A. Fantini, C.F. Kanagussuko; G.J. M. Zilioti; T.S. Martins; J. Alloys Compd., 2011, 509, S357-S360
T.H. Chiang; S.-L. Liu; S.-Y. Lee; T.-E. Hsieh; Thin Solid Films, 2009, 517, 6069-6075
P. Innocenzi; P. Falcaro; D. Grosso; F. Babonneau; J. Phys. Chem. B, 2003, 107, 4711-4717
E.C. de O. Nassor; L.R. Ávila; P.F. dos S. Pereira; K.J. Ciuffi; P.S. Calefi, & E.J. Nassar; Mater. Res., 2011, 14, 1–6
H. El Rassy; A.C. Pierre; J. Non- Cryst. Solids, 2005, 351, 1603-1610
S.R. Ryu; M. Tomozawa; J. Non-Cryst. Solids, 2006, 352, 3929-3935
F. Rubio; J. Rubio; J.L. Oteo, Spectroscopy Lett., 1998, 31, 199-219
C.J. Brinker; J. Non Cryst. Solids, 1988, 100, 31-50
S.S. Prakash; C.J. Brinker; A.J. Hurd; J. Non Cryst. Solids, 1995, 190, 264-275
S. Musić; N. Filipović-Vinceković and L. Sekovanić; Braz. J. Chem. Eng., 2011, 28, 89-94
X. Ying-Mei, Q. Ji; H. De-Min; W. Dong-Mei; C. Hui-Ying; G. Jun and Z. Qiu-Min; Oil Shale, 2010, 27, 37-46
D. Geetha; A. Ananthiand and P. S. Ramesh; J. Pure Appl. Phys., 2016, 4, 20-26
V.H. Le; C.N.H. Thuc and H.H. Thuc; Nanoscale Res. Lett., 2013, 8, 58
W. Thongthai and C. Metta; Songklanakarin J. Sci. Technol., 2012, 34, 403-407
I. Halasz; A. Kierys; J. Goworek; H. Liu; R.E. Patterson; J. Phys. Chem. C, 2011, 115, 24788-24799
G. Marcin; J.-S. Małgorzata; K. Mikko; S. Janne; Proceedings, XVII IMEKO World Congress, 2003, June 22 – 27, Dubrovnik, Croatia
G. Socrates; Infrared and Raman Characteristic Group Frequencies Tables and Charts, John Wiley & Sons, 2001
T. Jin; Z. Shanrong; W. Weifeng; D. Gordon; M. Xuanxue; Mater. Sci. Eng. B, 2004, 106, 295
O.V. Khavryuchenko; V.D. Khavryuchenko; J.O. Roszinski; A.I. Brusilovets;
B. Friede; V.V. Lisnyak; Thin Solid Films, 2006, 515, 1280
A. Jitianu; G. Amatucci; L.C. Klein; J. Mater. Res., 2008, 23, 2084
H. Haryadi; IPTEK, 2007, 18, 74
I. Halasz, R. Li; M. Agarwal and N. Miller; Stud. Surf. Sci. Catal., 2007, 170A, 800
D. Cebeci; A. Alam; P. Wang; R. Pinal; D. Ben-Amotz; Eur. Pharm. Rev., 2017, 22, 18-21
K.S. W. Sing; D.H. Everett; R.A.W. Haul; L. Moscou; R.A. Pierotti; J. Rouquerol; T. Siemieniewska; Pure Appl. Chem., 1985, 57, 603
M. Thommes; K. Kaneko; A.V. Neimark; J.P. Olivier; F. Rodriguez-Reinoso; J. Rouquerol and K.S.W. Sing; Pure Appl. Chem., 2015, 87, 1051
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.